Show simple item record

Direct power compensation in AC distribution networks with SCES systems via PI-PBC approach

dc.contributor.authorGil-González, Walter
dc.contributor.authorMartín-Serra, Federico
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorRamírez, Carlos Alberto
dc.contributor.authorOrozco-Henao, Cesar
dc.coverage.spatialCartagena de Indias, Colombia
dc.description.abstractHere, we explore the possibility of employing proportional-integral passivity-based control (PI-PBC) to support active and reactive power in alternating current (AC) distribution networks by using a supercapacitor energy storage system. A direct power control approach is proposed by taking advantage of the Park’s reference frame transform direct and quadrature currents ( id and iq ) into active and reactive powers (p and q). Based on the open-loop Hamiltonian model of the system, we propose a closed-loop PI-PBC controller that takes advantage of Lyapunov’s stability to design a global tracking controller. Numerical simulations in MATLAB/Simulink demonstrate the efficiency and robustness of the proposed controller, especially for parametric uncertainties.eng
dc.format.extent15 páginas
dc.sourceSymmetry; Vol. 12, Núm. 4 (2020)
dc.titleDirect power compensation in AC distribution networks with SCES systems via PI-PBC approachspa
dcterms.bibliographicCitationMensah-Darkwa, K.; Zequine, C.; Kahol, P.K.; Gupta, R.K. Supercapacitor energy storage device using biowastes: A sustainable approach to green energy. Sustainability 2019, 11, 414. [CrossRef]spa
dcterms.bibliographicCitationGil, W.; Montoya, O.D.; Garces, A. Direct power control of electrical energy storage systems: A passivity-based PI approach. Electr. Power Syst. Res. 2019, 175, 105885.
dcterms.bibliographicCitationMontoya, O.D.; Garces, A.; Espinosa-Perez, G. A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems. J. Energy Storage 2018, 16, 259–268. [CrossRef]
dcterms.bibliographicCitationAly, M.M.; Abdel-Akher, M.; Said, S.M.; Senjyu, T. A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support. Int. J. Electr. Power Energy Syst. 2016, 83, 485–494. [CrossRef]
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A. SCES Integration in Power Grids: A PBC Approach under abc, αβ0 and dq0 Reference Frames. In Proceedings of the 2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&D-LA), Lima, Peru, 18–21 September 2018; pp. 1–5.
dcterms.bibliographicCitationHaihua, Z.; Khambadkone, A.M. Hybrid modulation for dual active bridge bi-directional converter with extended power range for ultracapacitor application. In Proceedings of the 2008 IEEE Industry Applications Society Annual Meeting, Edmonton, AB, Canada, 5–9 October 2008; pp. 1–8.
dcterms.bibliographicCitationGil-González, W.J.; Garcés, A.; Escobar, A. A generalized model and control for supermagnetic and supercapacitor energy storage. Ing. Cienc. 2017, 13, 147–171. [CrossRef]
dcterms.bibliographicCitationThounthong, P.; Luksanasakul, A.; Koseeyaporn, P.; Davat, B. Intelligent model-based control of a standalone photovoltaic/fuel cell power plant with supercapacitor energy storage. IEEE Trans. Sustain. Energy 2012, 4, 240–249. [CrossRef]
dcterms.bibliographicCitationMufti, M.D.; Iqbal, S.J.; Lone, S.A.; Ain, Q. Supervisory Adaptive Predictive Control Scheme for Supercapacitor Energy Storage System. IEEE Syst. J. 2015, 9, 1020–1030. [CrossRef]
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A. Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches. Int. J. Electr. Power Energy Syst. 2019, 112, 221–231. [CrossRef]
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Avila-Becerril, S.; Garces, A.; Espinosa-Pérez, G. Distributed Energy Resources Integration in AC Grids: A Family of Passivity-Based Controll, (in Spanish). Rev. Iberoam. Autom. Inform. Ind. 2019, 16, 212–221. [CrossRef]
dcterms.bibliographicCitationOrtega, R.; Perez, J.A.L.; Nicklasson, P.J.; Sira-Ramirez, H.J. Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. Symmetry 2020, 12, 666 15 of 15
dcterms.bibliographicCitationvan der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control; Springer: Berlin/Heidelberg, Germany, 2017.
dcterms.bibliographicCitationCisneros, R.; Pirro, M.; Bergna, G.; Ortega, R.; Ippoliti, G.; Molinas, M. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters. Control Eng. Pract. 2015, 43, 109–119. [CrossRef]
dcterms.bibliographicCitationZonetti, D. Energy-Based Modelling and Control of Electric Power Systems with Guaranteed Stability Properties. Ph.D. Thesis, Université Paris-Saclay, Saint-Aubin, France, 2016.
dcterms.bibliographicCitationZonetti, D.; Ortega, R.; Benchaib, A. A globally asymptotically stable decentralized PI controller for multi-terminal high-voltage DC transmission systems. In Proceedings of the 2014 European control conference (ECC), Strasbourg, France, 24–27 June 2014; pp. 1397–1403.
dcterms.bibliographicCitationZonetti, D.; Ortega, R.; Benchaib, A. Modeling and control of HVDC transmission systems from theory to practice and back. Control. Eng. Pract. 2015, 45, 133–146. [CrossRef]
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Garces, A. Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach. Int. J. Electr. Power Energy Syst. 2019, 110, 588–597. [CrossRef]
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Serra, F.M. PBC Approach for SMES Devices in Electric Distribution Networks. IEEE Trans. Circuits Syst. II Exp. Briefs 2018, 65, 2003–2007. [CrossRef]
dcterms.bibliographicCitationHarnefors, L.; Nee, H.P. Model-based current control of AC machines using the internal model control method. IEEE Trans. Ind. Appl. 1998, 34, 133–141. [CrossRef]
dcterms.bibliographicCitationIEEE Standard for Interconnecting Distributed Resources with Electric Power Systems—Amendment 1. In IEEE Std 1547a-2014 (Amendment to IEEE Std 1547-2003); IEEE: Piscataway, NJ, USA, 2014; pp. 1–16. [CrossRef]
dc.subject.keywordsDistribution networksspa
dc.subject.keywordsDirect power control
dc.subject.keywordsGlobal tracking controller
dc.subject.keywordsPassivity - based control
dc.subject.keywordsSupercapacitor energy storage system
dc.rights.ccAtribución-NoComercial 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio UTBspa
dc.publisher.sedeCampus Tecnológicospa
dc.publisher.disciplineIngeniería Eléctricaspa

Files in this item


This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as