Mostrar el registro sencillo del ítem

dc.contributor.authorMarrugo Hernández, Andrés Guillermo
dc.contributor.otherZhang, Song
dc.contributor.otherFeng, Gao
dc.coverage.spatialCartagena de Indias
dc.date.accessioned2020-08-31T16:49:13Z
dc.date.available2020-08-31T16:49:13Z
dc.date.issued2020
dc.date.submitted2020-08-31
dc.identifier.citationAndres G. Marrugo, Feng Gao, and Song Zhang, "State-of-the-art active optical techniques for three-dimensional surface metrology: a review [Invited]," J. Opt. Soc. Am. A 37, B60-B77 (2020)spa
dc.identifier.issn1084-7529
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9348
dc.description.abstractThis paper reviews recent developments of non-contact three-dimensional (3D) surface metrology using an active structured optical probe. We focus primarily on those active non-contact 3D surface measurement techniques that could be applicable to the manufacturing industry. We discuss principles of each technology, and its advantageous characteristics as well as limitations. Towards the end, we discuss our perspectives on the current technological challenges in designing and implementing these methods in practical applications.eng
dc.description.sponsorshipPurdue Universityspa
dc.format.extent18 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceJournal of the Optical Society of America A; ; Vol. 37, Núm. 9 (2020); B60-B77spa
dc.source.urihttps://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-37-9-B60spa
dc.titleState-of-the-art active optical techniques for three-dimensional surface metrology: a review [Invited]spa
dcterms.bibliographicCitationR. Won, “Structured light spiralling up,” Nat. Photonics 11, 619–622 (2017). [CrossRef]spa
dcterms.bibliographicCitationJ.-A. Beraldin, B. Carrier, D. MacKinnon, and L. Cournoyer, “Characterization of triangulation-based 3D imaging systems using certified artifacts,” NCSLI Meas. 7, 50–60 (2016). [CrossRef]
dcterms.bibliographicCitationK. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1988). [CrossRef]
dcterms.bibliographicCitationD. Malacara, ed., Optical Shop Testing, 3rd ed. (Wiley, 2007).
dcterms.bibliographicCitationD. C. Ghiglia and M. D. Pritt, eds., Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
dcterms.bibliographicCitationX. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Laser Eng. 42, 245–261 (2004). [CrossRef]
dcterms.bibliographicCitationY.-Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt. 23, 4539–4543 (1984). [CrossRef]
dcterms.bibliographicCitationY.-Y. Cheng and J. C. Wyant, “Multiple-wavelength phase shifting interferometry,” Appl. Opt. 24, 804–807 (1985). [CrossRef]
dcterms.bibliographicCitationJ. Schmit, K. Creath, and J. C. Wyant, Optical Shop Testing, 3rd ed. (Wiley, 2007), Chap. Surface profilers, multiple wavelength, and white light interferometry, pp. 667–755.
dcterms.bibliographicCitationR. Windecker, P. Haible, and H. Tiziani, “Fast coherence scanning interferometry for measuring smooth, rough and spherical surfaces,” J. Mod. Opt. 42, 2059–2069 (1995). [CrossRef]
dcterms.bibliographicCitationT. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992). [CrossRef]
dcterms.bibliographicCitationL. Deck and P. De Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994). [CrossRef]
dcterms.bibliographicCitationA. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39, 2107–2115 (2000). [CrossRef]
dcterms.bibliographicCitationF. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2007). [CrossRef]
dcterms.bibliographicCitationJ. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966). [CrossRef]
dcterms.bibliographicCitationJ. Wyant and V. Bennett, “Using computer generated holograms to test aspheric wavefronts,” Appl. Opt. 11, 2833–2839 (1972). [CrossRef]
dcterms.bibliographicCitationJ. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995). [CrossRef]
dcterms.bibliographicCitationH. Shen, R. Zhu, Z. Gao, E. Pun, W. Wong, and X. Zhu, “Design and fabrication of computer-generated holograms for testing optical freeform surfaces,” Chin. Opt. Lett. 11, 032201 (2013). [CrossRef]
dcterms.bibliographicCitationP. Zanuttigh, G. Marin, C. D. Mutto, F. Minto, and G. M. Cortelazzo, Time-of-Flight and Structured Light Depth Cameras (Springer, 2016).
dcterms.bibliographicCitationT. Kushida, K. Tanaka, T. Aoto, T. Funatomi, and Y. Mukaigawa, “Phase disambiguation using spatio-temporally modulated illumination in depth sensing,” IPSJ Trans. Comput. Vis. Appl. 12, 1 (2020). [CrossRef]
dcterms.bibliographicCitationM. Hansard, S. Lee, O. Choi, and R. Horaud, Time-of-Flight Cameras, Principles, Methods and Applications (Springer, 2013).
dcterms.bibliographicCitationS. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011). [CrossRef]
dcterms.bibliographicCitationJ. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010). [CrossRef]
dcterms.bibliographicCitationS. Zhang, “High-speed 3D shape measurement with structured light methods: a review,” Opt. Laser Eng. 106, 119–131 (2018). [CrossRef]
dcterms.bibliographicCitationD. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47, 7–42 (2002). [CrossRef]
dcterms.bibliographicCitationR. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003)
dcterms.bibliographicCitationS. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acquisition,” ACM Trans. Graph. 21, 438–446 (2002). [CrossRef]
dcterms.bibliographicCitationO. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light range scanning of moving objects,” in 8th IEEE International Conference on Computer Vision (2001), pp. 359–366.
dcterms.bibliographicCitationJ. Xu and S. Zhang, “Status, challenges, and future perspectives of fringe projection profilometry,” Opt. Laser Eng. (to be published). [CrossRef]
dcterms.bibliographicCitationM. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983). [CrossRef]
dcterms.bibliographicCitationQ. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004). [CrossRef]
dcterms.bibliographicCitationQ. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Laser. Eng. 45, 304–317 (2007). [CrossRef]
dcterms.bibliographicCitationK. Qian, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Laser Eng. 48, 141–148 (2010). [CrossRef]
dcterms.bibliographicCitationK. Qian, “Applications of windowed Fourier fringe analysis in optical measurement: a review,” Opt. Laser Eng. 66, 67–73 (2015). [CrossRef]
dcterms.bibliographicCitationL. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng. 29, 1439–1444 (1990). [CrossRef]
dcterms.bibliographicCitationH. Guo and P. S. Huang, “Absolute phase technique for the Fourier transform method,” Opt. Eng. 48, 043609 (2009). [CrossRef]
dcterms.bibliographicCitationX. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48, 191–204 (2010). [CrossRef]
dcterms.bibliographicCitationZ. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Laser Eng. 50, 1097–1106 (2012). [CrossRef]
dcterms.bibliographicCitationM. Takeda, “Fourier fringe analysis and its applications to metrology of extreme physical phenomena: a review,” Appl. Opt. 52, 20–29 (2013). [CrossRef]
dcterms.bibliographicCitationG. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38, 6565–6573 (1999). [CrossRef]
dcterms.bibliographicCitationY. Wang and S. Zhang, “Novel phase coding method for absolute phase retrieval,” Opt. Lett. 37, 2067–2069 (2012). [CrossRef]
dcterms.bibliographicCitationC. Zuo, L. Huan, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016). [CrossRef]
dcterms.bibliographicCitationS. Zhang, “Absolute phase retrieval methods for digital fringe projection profilometry: a review,” Opt. Laser Eng. 107, 28–37 (2018). [CrossRef]
dcterms.bibliographicCitationK. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013). [CrossRef]
dcterms.bibliographicCitationZ. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38, 1389–1391 (2013). [CrossRef]
dcterms.bibliographicCitationY. R. Huddart, J. D. R. Valera, N. J. Weston, and A. J. Moore, “Absolute phase measurement in fringe projection using multiple perspectives,” Opt. Express 21, 21119–21130 (2013). [CrossRef]
dcterms.bibliographicCitationY. An, J.-S. Hyun, and S. Zhang, “Pixel-wise absolute phase unwrapping using geometric constraints of structured light system,” Opt. Express 24, 18445–18459 (2016). [CrossRef]
dcterms.bibliographicCitationW. Cruz-Santos and L. Lopez-Garcia, “Implicit absolute phase retrieval in digital fringe projection without reference lines,” Appl. Opt. 54, 1688–1695 (2015). [CrossRef]
dcterms.bibliographicCitationS. Zhang and S.-T. Yau, “High-resolution, real-time 3-D absolute coordinate measurement based on a phase-shifting method,” Opt. Express 14, 2644–2649 (2006). [CrossRef]
dcterms.bibliographicCitationX. Su, Q. Zhang, Y. Xiao, and L. Xiang, “Dynamic 3-D shape measurement techniques with marked fringes tracking,” in Fringe (2009), pp. 493–496.
dcterms.bibliographicCitationD. Zheng, Q. Kemao, F. Da, and H. S. Seah, “Ternary gray code-based phase unwrapping for 3D measurement using binary patterns with projector defocusing,” Appl. Opt. 56, 3660–3665 (2017). [CrossRef]
dcterms.bibliographicCitationC. Zhou, T. Liu, S. Si, J. Xu, Y. Liu, and Z. Lei, “Phase coding method for absolute phase retrieval with a large number of codewords,” Opt. Express 20, 24139–24150 (2012). [CrossRef]
dcterms.bibliographicCitationX. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992). [CrossRef]
dcterms.bibliographicCitationS. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009). [CrossRef]
dcterms.bibliographicCitationS. Zhang, D. van der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18, 9684–9689 (2010). [CrossRef]
dcterms.bibliographicCitationS. Lei and S. Zhang, “Digital sinusoidal fringe generation: defocusing binary patterns vs focusing sinusoidal patterns,” Opt. Laser Eng. 48, 561–569 (2010). [CrossRef]
dcterms.bibliographicCitationB. Li and S. Zhang, “Microscopic structured light 3D profilometry: binary defocusing technique vs sinusoidal fringe projection,” Opt. Laser Eng. 96, 117–123 (2017). [CrossRef]
dcterms.bibliographicCitationG. A. Ayubi, J. A. Ayubi, J. M. D. Martino, and J. A. Ferrari, “Pulse-width modulation in defocused 3-D fringe projection,” Opt. Lett. 35, 3682–3684 (2010). [CrossRef]
dcterms.bibliographicCitationY. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35, 4121–4123 (2010). [CrossRef]
dcterms.bibliographicCitationT. Xian and X. Su, “Area modulation grating for sinusoidal structure illumination on phase-measuring profilometry,” Appl. Opt. 40,1201–1206 (2001). [CrossRef]
dcterms.bibliographicCitationW. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38,540–542 (2013). [CrossRef]
dcterms.bibliographicCitationJ. Dai, B. Li, and S. Zhang, “High-quality fringe patterns generation using binary pattern optimization through symmetry and periodicity,” Opt. Laser Eng. 52, 195–200 (2014). [CrossRef]
dcterms.bibliographicCitationJ. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24, 28549–28560 (2016). [CrossRef]
dcterms.bibliographicCitationY. Wang, C. Jiang, and S. Zhang, “Double-pattern triangular pulse width modulation technique for high-accuracy high-speed 3D shape measurement,” Opt. Express 25, 30177–30188 (2017). [CrossRef]
dcterms.bibliographicCitationY. Wang and S. Zhang, “Comparison among square binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement,” Appl. Opt. 51, 861–872 (2012). [CrossRef]
dcterms.bibliographicCitationM.-A. Drouin, G. Godin, M. Picard, J. Boisvert, and L.-G. Dicaire, “Structured-light systems using a programmable quasi-analogue projection subsystem,” Proc. SPIE 11294, 112940O (2020). [CrossRef]
dcterms.bibliographicCitation“Geometrical product specifications (GPS)—surface texture: profile method; measurement standards—part 1: material measures,” Standard ISO 5436-1: 2000 (International Organization for Standardization, 2000).
dcterms.bibliographicCitation“Geometrical product specifications (GPS)—surface texture: profile method; measurement standards—part 1: material measures,” Standard ISO 5436-2:2012 (International Organization for Standardization, 2012).
dcterms.bibliographicCitationR. K. Leach, C. Giusca, H. Haitjema, C. Evans, and X. Jiang, “Calibration and verification of areal surface texture measuring instruments,” CIRP Ann. 64, 797–813 (2015). [CrossRef]
dcterms.bibliographicCitationZ. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000). [CrossRef]
dcterms.bibliographicCitationS. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006). [CrossRef]
dcterms.bibliographicCitationB. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured light system with an out-of-focus projector,” Appl. Opt. 53, 3415–3426 (2014). [CrossRef]
dcterms.bibliographicCitationT. Bell and S. Zhang, “Method for out-of-focus camera calibration,” Appl. Opt. 55, 2346–2352 (2016). [CrossRef]
dcterms.bibliographicCitationY. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Novel method for large range structured light system calibration,” Appl. Opt. 55, 9563–9572 (2016). [CrossRef]
dcterms.bibliographicCitationK. Li, J. Bu, and D. Zhang, “Lens distortion elimination for improving measurement accuracy of fringe projection profilometry,” Opt. Laser Eng. 85, 53–64 (2016). [CrossRef]
dcterms.bibliographicCitationR. Vargas, A. G. Marrugo, J. Pineda, J. Meneses, and L. A. Romero, “Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: a comparative study,” Opt. Pura Appl. 51, 50305 (2018). [CrossRef]
dcterms.bibliographicCitationY. Yin, X. Peng, A. Li, X. Liu, and B. Z. Gao, “Calibration of fringe projection profilometry with bundle adjustment strategy,” Opt. Lett. 37, 542–544 (2012). [CrossRef]
dcterms.bibliographicCitationL. Huang, P. S. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548 (2010). [CrossRef]
dcterms.bibliographicCitationY. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Method for large-range structured light system calibration,” Appl. Opt. 55, 9563–9572 (2016). [CrossRef]
dcterms.bibliographicCitationR. Vargas, A. G. Marrugo, S. Zhang, and L. A. Romero, “Hybrid calibration procedure for fringe projection profilometry based on stereo vision and polynomial fitting,” Appl. Opt. 59, D163–D167 (2020). [CrossRef]
dcterms.bibliographicCitationD. Lefloch, R. Nair, F. Lenzen, H. Schäfer, L. Streeter, M. J. Cree, R. Koch, and A. Kolb, “Technical foundation and calibration methods for time-of-flight cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications (Springer, 2013), pp. 3–24.
dcterms.bibliographicCitationS. Fuchs and G. Hirzinger, “Extrinsic and depth calibration of ToF-cameras,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008), pp. 1–6
dcterms.bibliographicCitationA. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and R. Raskar, “Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization,” Opt. Lett. 39, 1705–1708 (2014). [CrossRef]
dcterms.bibliographicCitationA. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: a computer graphics and vision perspective,” Vis. Inf. 1, 65–79 (2017). [CrossRef]
dcterms.bibliographicCitationC. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992). [CrossRef] 86. B. Ngoi, K. Venkatakrishnan, and N. Sivakumar, “Phase-shifting interferometry immune to vibration,” Appl. Opt. 40, 3211–3214 (2001). [CrossRef]
dcterms.bibliographicCitationJ. E. Millerd, N. J. Brock, J. B. Hayes, and J. C. Wyant, “Instantaneous phase-shift point-diffraction interferometer,” Proc. SPIE 5531, 264–272 (2004). [CrossRef]
dcterms.bibliographicCitationH. Kihm and S.-W. Kim, “Fiber-diffraction interferometer for vibration desensitization,” Opt. Lett. 30, 2059–2061 (2005). [CrossRef]
dcterms.bibliographicCitationJ. Huang, T. Honda, N. Ohyama, and J. Tsujiuchi, “Fringe scanning scatter plate interferometer using a polarized light,” Opt. Commun. 68, 235–238 (1988). [CrossRef]
dcterms.bibliographicCitationM. B. North-Morris, J. VanDelden, and J. C. Wyant, “Phase-shifting birefringent scatterplate interferometer,” Appl. Opt. 41, 668–677 (2002). [CrossRef]
dcterms.bibliographicCitationD.-C. Su and L.-H. Shyu, “Phase shifting scatter plate interferometer using a polarization technique,” J. Mod. Opt. 38, 951–959 (1991). [CrossRef]
dcterms.bibliographicCitationG. S. Kino and S. S. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990). [CrossRef]
dcterms.bibliographicCitationC. Gomez, R. Su, P. De Groot, and R. Leach, “Noise reduction in coherence scanning interferometry for surface topography measurement,” Nanomanuf. Metrol. 3, 68–76 (2020). [CrossRef]
dcterms.bibliographicCitationH. Altamar-Mercado, A. Patiño-Vanegas, and A. G. Marrugo, “Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy,” Appl. Opt. 58, A101–A111 (2019). [CrossRef]
dcterms.bibliographicCitationM. Thomas, R. Su, N. Nikolaev, J. Coupland, and R. K. Leach, “Modeling of interference microscopy beyond the linear regime,” Opt. Eng. 59, 034110 (2020). [CrossRef]
dcterms.bibliographicCitationS. Kuwamura and I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997). [CrossRef]
dcterms.bibliographicCitationD. S. Mehta, S. Saito, H. Hinosugi, M. Takeda, and T. Kurokawa, “Spectral interference Mirau microscope with an acousto-optic tunable filter for three-dimensional surface profilometry,” Appl. Opt. 42, 1296–1305 (2003). [CrossRef]
dcterms.bibliographicCitationK. Hibino, B. F. Oreb, P. S. Fairman, and J. Burke, “Simultaneous measurement of surface shape and variation in optical thickness of a transparent parallel plate in wavelength-scanning Fizeau interferometer,” Appl. Opt. 43, 1241–1249 (2004). [CrossRef]
dcterms.bibliographicCitationX. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49, 2903–2909 (2010). [CrossRef]
dcterms.bibliographicCitationG. Bourdet and A. Orszag, “Absolute distance measurements by CO2 laser multiwavelength interferometry,” Appl. Opt. 18, 225–227 (1979). [CrossRef]
dcterms.bibliographicCitationK.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength (mesures de distances absolues par interférométrie utilisant une longueur d’onde variable synthétique),” J. Opt. 29, 179 (1998). [CrossRef]
dcterms.bibliographicCitationH. Muhamedsalih, S. Al-Bashir, F. Gao, and X. Jiang, “Single-shot RGB polarising interferometer,” Proc. SPIE 10749, 1074909 (2018). [CrossRef]
dcterms.bibliographicCitationJ. Kagami, T. Hatazawa, and K. Koike, “Measurement of surface profiles by the focusing method,” Wear 134, 221–229 (1989). [CrossRef]
dcterms.bibliographicCitationM. Visscher and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part I: principles of focus error detection,” Precis. Eng. 16, 192–198 (1994). [CrossRef]
dcterms.bibliographicCitationM. Visscher, C. Hendriks, and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part ii: application to elastometer/glass contacts,” Precis. Eng. 16, 199–204 (1994). [CrossRef]
dcterms.bibliographicCitationM. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988). [CrossRef]
dcterms.bibliographicCitationD. Hamilton and T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982). [CrossRef]
dcterms.bibliographicCitationH.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142 (1998). [CrossRef]
dcterms.bibliographicCitationR. Windecker, M. Fleischer, and H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997). [CrossRef]
dcterms.bibliographicCitationC. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41, 5896–5904 (2002). [CrossRef]
dcterms.bibliographicCitationK.-P. Proll, J.-M. Nivet, K. Körner, and H. J. Tiziani, “Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays,” Appl. Opt. 42, 1773–1778 (2003). [CrossRef]
dcterms.bibliographicCitationR. Rodriguez-Vera, K. Genovese, J. Rayas, and F. Mendoza-Santoyo, “Vibration analysis at microscale by Talbot fringe projection method,” Strain 45, 249–258 (2009). [CrossRef]
dcterms.bibliographicCitationA. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik 124, 5052–5056 (2013). [CrossRef]
dcterms.bibliographicCitationC. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001). [CrossRef]
dcterms.bibliographicCitationC. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002). [CrossRef]
dcterms.bibliographicCitationJ. Chen, T. Guo, L. Wang, Z. Wu, X. Fu, and X. Hu, “Microscopic fringe projection system and measuring method,” Proc. SPIE 8759, 87594U (2013). [CrossRef]
dcterms.bibliographicCitationD. S. Mehta, M. Inam, J. Prakash, and A. Biradar, “Liquid-crystal phase-shifting lateral shearing interferometer with improved fringe contrast for 3D surface profilometry,” Appl. Opt. 52, 6119–6125 (2013). [CrossRef]
dcterms.bibliographicCitationY. Yin, M. Wang, B. Z. Gao, X. Liu, and X. Peng, “Fringe projection 3D microscopy with the general imaging model,” Opt. Express 23, 6846–6857 (2015). [CrossRef]
dcterms.bibliographicCitationD. Li and J. Tian, “An accurate calibration method for a camera with telecentric lenses,” Opt. Laser Eng. 51, 538–541 (2013). [CrossRef]
dcterms.bibliographicCitationD. Li, C. Liu, and J. Tian, “Telecentric 3D profilometry based on phase-shifting fringe projection,” Opt. Express 22, 31826–31835 (2014). [CrossRef]
dcterms.bibliographicCitationB. Li and S. Zhang, “Flexible calibration method for microscopic structured light system using telecentric lens,” Opt. Express 23, 25795–25803 (2015). [CrossRef]
dcterms.bibliographicCitationR. Whyte, L. Streeter, M. J. Cree, and A. A. Dorrington, “Resolving multiple propagation paths in time of flight range cameras using direct and global separation methods,” Opt. Eng. 54, 113109 (2015). [CrossRef]
dcterms.bibliographicCitationM. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: a generalization of correlation-based time-of-flight imaging,” ACM Trans. Graph. 34, 1–18 (2015). [CrossRef]
dcterms.bibliographicCitationT. Muraji, K. Tanaka, T. Funatomi, and Y. Mukaigawa, “Depth from phasor distortions in fog,” Opt. Express 27, 18858–18868 (2019). [CrossRef]
dcterms.bibliographicCitationA. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graph. 32, 1–10 (2013). [CrossRef]
dcterms.bibliographicCitationS. Lee and H. Shim, “Skewed stereo time-of-flight camera for translucent object imaging,” Image Vis. Comput. 43, 27–38 (2015). [CrossRef]
dcterms.bibliographicCitationK. Tanaka, Y. Mukaigawa, H. Kubo, Y. Matsushita, and Y. Yagi, “Recovering transparent shape from time-of-flight distortion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 4387–4395.
dcterms.bibliographicCitationM. Poggi, G. Agresti, F. Tosi, P. Zanuttigh, and S. Mattoccia, “Confidence estimation for ToF and stereo sensors and its application to depth data fusion,” IEEE Sens. J. 20, 1411–1421 (2020). [CrossRef]
dcterms.bibliographicCitationG. Agresti and P. Zanuttigh, “Combination of spatially-modulated ToF and structured light for MPI-free depth estimation,” in Proceedings of the European Conference on Computer Vision (ECCV) (2018).
dcterms.bibliographicCitationJ. N. Mait, G. W. Euliss, and R. A. Athale, “Computational imaging,” Adv. Opt. Photon. 10, 409–475 (2018). [CrossRef]
dcterms.bibliographicCitationG. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019). [CrossRef]
dcterms.bibliographicCitationM. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008). [CrossRef]
dcterms.bibliographicCitationM.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016). [CrossRef]
dcterms.bibliographicCitationE. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992). [CrossRef]
dcterms.bibliographicCitationT. E. Bishop and P. Favaro, “The light field camera: extended depth of field, aliasing, and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 972–986 (2011). [CrossRef]
dcterms.bibliographicCitationZ. Cai, X. Liu, X. Peng, Y. Yin, A. Li, J. Wu, and B. Z. Gao, “Structured light field 3D imaging,” Opt. Express 24, 20324–20334 (2016). [CrossRef]
dcterms.bibliographicCitationZ. Cai, X. Liu, X. Peng, and B. Z. Gao, “Ray calibration and phase mapping for structured-light-field 3D reconstruction,” Opt. Express 26, 7598–7613 (2018). [CrossRef]
dcterms.bibliographicCitationZ. Cai, X. Liu, G. Pedrini, W. Osten, and X. Peng, “Accurate depth estimation in structured light fields,” Opt. Express 27, 13532–13546 (2019). [CrossRef]
dcterms.bibliographicCitationC. Alippi, A. Ferrero, and V. Piuri, “Artificial intelligence for instruments and measurement applications,” IEEE Instrum. Meas. Mag. 1(2), 9–17 (1998). [CrossRef]
dcterms.bibliographicCitationA. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE Intell. Syst. 24, 8–12 (2009). [CrossRef]
dcterms.bibliographicCitationS. Su, F. Heide, G. Wetzstein, and W. Heidrich, “Deep end-to-end time-of-flight imaging,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 6383–6392.
dcterms.bibliographicCitationD. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt, and S. Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Manuf. Technol. 104, 1889–1902 (2019). [CrossRef]
dcterms.bibliographicCitationW. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A. Asundi, and C. Zuo, “Temporal phase unwrapping using deep learning,” Sci. Rep. 9, 1–12 (2019). [CrossRef]
dcterms.bibliographicCitationK. Wang, Y. Li, Q. Kemao, J. Di, and J. Zhao, “One-step robust deep learning phase unwrapping,” Opt. Express 27, 15100–15115 (2019). [CrossRef]
dcterms.bibliographicCitationS. Feng, C. Zuo, W. Yin, G. Gu, and Q. Chen, “Micro deep learning profilometry for high-speed 3D surface imaging,” Opt. Laser Eng. 121, 416–427 (2019). [CrossRef]
dcterms.bibliographicCitationS. Lv, Q. Sun, Y. Zhang, Y. Jiang, J. Yang, J. Liu, and J. Wang, “Projector distortion correction in 3D shape measurement using a structured-light system by deep neural networks,” Opt. Lett. 45, 204–207 (2020). [CrossRef]
dcterms.bibliographicCitationS. Van der Jeught and J. J. J. Dirckx, “Deep neural networks for single shot structured light profilometry,” Opt. Express 27, 17091–17101 (2019). [CrossRef]
dcterms.bibliographicCitationJ. Qian, S. Feng, Y. Li, T. Tao, J. Han, Q. Chen, and C. Zuo, “Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry,” Opt. Lett. 45, 1842–1844 (2020). [CrossRef]
dcterms.bibliographicCitationJ. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M. H. Kim, X. Tong, and D. Gutierrez, “Deep ToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging,” ACM Trans. Graph. 36, 1–12 (2017). [CrossRef]
dcterms.bibliographicCitationS. Zhan, T. Suming, G. Feifei, S. Chu, and F. Jianyang, “DOE-based structured-light method for accurate 3D sensing,” Opt. Laser Eng. 120, 21–30 (2019). [CrossRef]
dcterms.bibliographicCitationBudianto and D. P. K. Lun, “Robust fringe projection profilometry via sparse representation,” IEEE Tran. Image Process. 25, 1726–1739 (2016). [CrossRef]
dcterms.bibliographicCitationH. Guo, “Face recognition based on fringe pattern analysis,” Opt. Eng. 49, 037201 (2010). [CrossRef]
dcterms.bibliographicCitationF. Liu, D. Zhang, and L. Shen, “Study on novel curvature features for 3D fingerprint recognition,” Neurocomputing 168, 599–608 (2015). [CrossRef]
dcterms.bibliographicCitationS. Jiao, Y. Gao, J. Feng, T. Lei, and X. Yuan, “Does deep learning always outperform simple linear regression in optical imaging?” Opt. Express 28, 3717–3731 (2020). [CrossRef]
dcterms.bibliographicCitationF. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light Sci. Appl. 9, 77 (2020). [CrossRef]
dcterms.bibliographicCitationL. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011). [CrossRef]
dcterms.bibliographicCitationB. Chen and S. Zhang, “High-quality 3D shape measurement using saturated fringe patterns,” Opt. Laser Eng. 87, 83–89 (2016). [CrossRef]
dcterms.bibliographicCitationS. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009). [CrossRef]
dcterms.bibliographicCitationC. Waddington and J. Kofman, “Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting,” Opt. Laser Eng. 48, 251–256 (2010). [CrossRef]
dcterms.bibliographicCitationC. Jiang, T. Bell, and S. Zhang, “High dynamic range real-time 3D shape measurement,” Opt. Express 24, 7337–7346 (2016). [CrossRef]
dcterms.bibliographicCitationY. Zheng, Y. Wang, V. Suresh, and B. Li, “Real-time high-dynamic-range fringe acquisition for 3D shape measurement with a RGB camera,” Meas. Sci. Technol. 30, 075202 (2019). [CrossRef]
dcterms.bibliographicCitationV. Suresh, Y. Wang, and B. Li, “High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device,” Opt. Laser Eng. 107, 176–181 (2018). [CrossRef]
dcterms.bibliographicCitationB. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22, 10064–10071 (2014). [CrossRef]
dcterms.bibliographicCitationH. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment,” Opt. Laser Eng. 91, 206–215 (2017). [CrossRef]
dcterms.bibliographicCitationD. Li and J. Kofman, “Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement,” Opt. Express 22, 9887–9901 (2014). [CrossRef]
dcterms.bibliographicCitationH. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012). [CrossRef]
dcterms.bibliographicCitationH. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014). [CrossRef]
dcterms.bibliographicCitationC. Chen, N. Gao, X. Wang, and Z. Zhang, “Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement,” Opt. Commun. 410, 694–702 (2017). [CrossRef]
dcterms.bibliographicCitationS. Feng, Y. Zhang, Q. Chen, C. Zuo, R. Li, and G. Shen, “General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique,” Opt. Laser Eng. 59, 56–71 (2014). [CrossRef]
dcterms.bibliographicCitationS. Ri, M. Fujigaki, and Y. Morimoto, “Intensity range extension method for three-dimensional shape measurement in phase- measuring profilometry using a digital micromirror device camera,” Appl. Opt. 47, 5400–5407 (2008). [CrossRef]
dcterms.bibliographicCitationS. Zhang, “Rapid and automatic optimal exposure control for digital fringe projection technique,” Opt. Laser Eng. 128, 106029 (2020). [CrossRef]
dcterms.bibliographicCitation172. X. Hu, G. Wang, J.-S. Hyun, Y. Zhang, H. Yang, and S. Zhang, “Autofocusing method for high-resolution three-dimensional profilometry,” Opt. Lett. 45, 375–378 (2020). [CrossRef]
dcterms.bibliographicCitationM. Zhong, X. Hu, F. Chen, C. Xiao, D. Peng, and S. Zhang, “Autofocusing method for digital fringe projection system with dual projectors,” Opt. Express 28, 12609–12620 (2020). [CrossRef]
dcterms.bibliographicCitationM. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010). [CrossRef]
dcterms.bibliographicCitationM. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018). [CrossRef]
dcterms.bibliographicCitationP. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express 13, 6738–6749 (2005). [CrossRef]
dcterms.bibliographicCitationT. Kreis, “Application of digital holography for nondestructive testing and metrology: a review,” IEEE Trans. Ind. Inf. 12, 240–247 (2016). [CrossRef]
dcterms.bibliographicCitationA. Mikš and J. Novák, “Analysis of the optical center position of an optical system of a camera lens,” Appl. Opt. 57, 4409–4414 (2018). [CrossRef]
dcterms.bibliographicCitationY. Zhang, Z. Xiong, P. Cong, and F. Wu, “Robust depth sensing with adaptive structured light illumination,” J. Visual Commun. Image Represent. 25, 649–658 (2014). [CrossRef]
dcterms.bibliographicCitationL. Ekstrand and S. Zhang, “Three-dimensional profilometry with nearly focused binary phase-shifting algorithms,” Opt. Lett. 36, 4518–4520 (2011). [CrossRef]
dcterms.bibliographicCitationJ.-S. Hyun, G. T. C. Chiu, and S. Zhang, “High-speed and high-accuracy 3D surface measurement using a mechanical projector,” Opt. Express 26, 1474–1487 (2018). [CrossRef]
dcterms.bibliographicCitationS. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016). [CrossRef]
dcterms.bibliographicCitationX. Hu, G. Wang, Y. Zhang, H. Yang, and S. Zhang, “Large depth-of-field 3D shape measurement using an electrically tunable lens,” Opt. Express 27, 29697–29709 (2019). [CrossRef]
dcterms.bibliographicCitationW. Torres-Sepúlveda, J. Henao, J. Morales-Marn, A. Mira-Agudelo, and E. Rueda, “Hysteresis characterization of an electrically focus-tunable lens,” Opt. Eng. 59, 044103 (2020). [CrossRef]
dcterms.bibliographicCitationR. Leach, L. Brown, J. Jiang, R. Blunt, M. Conroy, and D. Mauger, Guide to the Measurement of Smooth Surface Topography using Coherence Scanning Interferometry (2008)
dcterms.bibliographicCitationT. Chen, H. P. Lensch, C. Fuchs, and H.-P. Seidel, “Polarization and phase-shifting for 3D scanning of translucent objects,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8.
dcterms.bibliographicCitationR. M. Kowarschik, J. Gerber, G. Notni, W. Schreiber, and P. Kuehmstedt, “Adaptive optical 3D measurement with structured light,” Opt. Eng. 39, 150–158 (2000). [CrossRef]
dcterms.bibliographicCitationH. Lin, J. Gao, G. Zhang, X. Chen, Y. He, and Y. Liu, “Review and comparison of high-dynamic range three-dimensional shape measurement techniques,” J. Sens. 2017, 9576850 (2017). [CrossRef]
dcterms.bibliographicCitationH. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24, 7703–7718 (2016). [CrossRef]
dcterms.bibliographicCitationG.-H. Liu, X.-Y. Liu, and Q.-Y. Feng, “3D shape measurement of objects with high dynamic range of surface reflectivity,” Appl. Opt. 50, 4557–4565 (2011). [CrossRef]
dcterms.bibliographicCitationP. Lutzke, “Measuring error compensation on three-dimensional scans of translucent objects,” Opt. Eng. 50, 063601 (2011). [CrossRef]
dcterms.bibliographicCitationR. Ran, C. Stolz, D. Fofi, and F. Meriaudeau, “Non contact 3D measurement scheme for transparent objects using UV structured light,” in 20th International Conference on Pattern Recognition (ICPR) (IEEE, 2010), pp. 1646–1649.
dcterms.bibliographicCitationA. Brahm, C. Rößler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3D shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016). [CrossRef]
dcterms.bibliographicCitationS. Yamazaki, M. Mochimaru, and T. Kanade, “Simultaneous self-calibration of a projector and a camera using structured light,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops) (IEEE, 2011), pp. 60–67.
dcterms.bibliographicCitationR. Orghidan, J. Salvi, M. Gordan, C. Florea, and J. Batlle, “Structured light self-calibration with vanishing points,” Mach. Vis. Appl. 25, 489–500 (2014). [CrossRef]
dcterms.bibliographicCitationF. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping,” IEEE Trans. Comput. Imaging 3, 74–83 (2017). [CrossRef]
dcterms.bibliographicCitationS. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marn-Jiménez, “Simultaneous reconstruction and calibration for multi-view structured light scanning,” J. Visual Commun. Image Represent. 39, 120–131 (2016). [CrossRef]
dcterms.bibliographicCitationW. Schreiber and G. Notni, “Theory and arrangements of self-calibrating whole-body 3-D-measurement systems using fringe projection technique,” Opt. Eng. 39, 159–169 (2000). [CrossRef]
dcterms.bibliographicCitationJ. Tian, Y. Ding, and X. Peng, “Self-calibration of a fringe projection system using epipolar constraint,” Opt. Laser Technol. 40, 538–544 (2008). [CrossRef]
dcterms.bibliographicCitationC. Resch, P. Keitler, C. Menk, and G. Klinker, “Semi-automatic calibration of a projector-camera system using arbitrary objects with known geometry,” in IEEE Virtual Reality (VR) (2015), pp. 271–272.
dcterms.bibliographicCitationH. Kawasaki, R. Sagawa, Y. Yagi, R. Furukawa, N. Asada, and P. Sturm, “One-shot scanning method using an uncalibrated projector and camera system,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops (2010), pp. 104–111.
dcterms.bibliographicCitationB. Zhang and Y. Li, “Dynamic calibration of the relative pose and error analysis in a structured light system,” J. Opt. Soc. Am. A 25, 612–622 (2008). [CrossRef]
dcterms.bibliographicCitationD. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” ISPRS J. Photogramm. Remote Sens. 65, 360–368 (2010). [CrossRef]
dcterms.bibliographicCitationN. Karpinsky and S. Zhang, “Holovideo: real-time 3D video encoding and decoding on gpu,” Opt. Laser Eng. 50, 280–286 (2012). [CrossRef]
dcterms.bibliographicCitationZ. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Laser Eng. 50, 844–849 (2012). [CrossRef]
dcterms.bibliographicCitationS. Zhang, “Three-dimensional range data compression using computer graphics rendering pipeline,” Appl. Opt. 51, 4058–4064 (2012). [CrossRef]
dcterms.bibliographicCitationT. Bell and S. Zhang, “Multi-wavelength depth encoding method for 3D range geometry compression,” Appl. Opt. 54, 10684–10961 (2015). [CrossRef]
dcterms.bibliographicCitationA. Maglo, G. Lavoué, F. Dupont, and C. Hudelot, “3D mesh compression: survey, comparisons, and emerging trends,” ACM Comput. Surv. 47, 1–41 (2015). [CrossRef]
dcterms.bibliographicCitationT. Bell, B. Vlahov, J. P. Allebach, and S. Zhang, “Three-dimensional range geometry compression via phase encoding,” Appl. Opt. 56, 9285–9292 (2017).
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1364/JOSAA.398644
dc.subject.keywordsOptical measurements
dc.subject.keywordsInterferometry
dc.subject.keywordsOptical engineering
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución-NoComercial 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio UTBspa
dc.type.spaArtículospa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.publisher.disciplineIngeniería Mecatrónicaspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.