Mostrar el registro sencillo del ítem

dc.creatorMontoya O.D.
dc.creatorGil-González W.
dc.creatorGrisales-Noreña L.F.
dc.creatorOrozco-Henao C.
dc.creatorSerra F.
dc.date.accessioned2020-03-26T16:41:28Z
dc.date.available2020-03-26T16:41:28Z
dc.date.issued2019
dc.identifier.citationMontoya O.D., Gil-González W., Grisales-Norena L., Orozco-Henao C. y Serra F. (2019) Economic dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models. Energies; Vol. 12, Núm. 23
dc.identifier.issn19961073
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9253
dc.description.abstractThis paper addresses the optimal dispatch problem for battery energy storage systems (BESSs) in direct current (DC) mode for an operational period of 24 h. The problem is represented by a nonlinear programming (NLP) model that was formulated using an exponential voltage-dependent load model, which is the main contribution of this paper. An artificial neural network was employed for the short-term prediction of available renewable energy from wind and photovoltaic sources. The NLP model was solved by using the general algebraic modeling system (GAMS) to implement a 30-node test feeder composed of four renewable generators and three batteries. Simulation results demonstrate that the cost reduction for a daily operation is drastically affected by the operating conditions of the BESS, as well as the type of load model used. © 2019 MDPI AG. All rights reserved.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076239314&doi=10.3390%2fen12234494&partnerID=40&md5=5aad556cf10a550cccf8bae524f3e92d
dc.sourceScopus2-s2.0-85076239314
dc.titleEconomic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models
dcterms.bibliographicCitationMutarraf, M., Terriche, Y., Niazi, K., Vasquez, J., Guerrero, J., Energy storage systems for shipboard microgrids-a review (2018) Energies, 11, p. 3492. , [CrossRef]
dcterms.bibliographicCitationHu, J., Shan, Y., Xu, Y., Guerrero, J.M., A coordinated control of hybrid ac/dc microgrids with pv-wind-battery under variable generation and load conditions (2019) Int. J. Electr. Power Energy Syst., 104, pp. 583-592. , [CrossRef]
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J. Energy Storage, 21, pp. 1-8. , [CrossRef]
dcterms.bibliographicCitationZou, D., Li, S., Kong, X., Ouyang, H., Li, Z., Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy (2019) Appl. Energy, 237, pp. 646-670. , [CrossRef]
dcterms.bibliographicCitationZia, M.F., Elbouchikhi, E., Benbouzid, M., Guerrero, J., Energy management system for an islanded microgrid with convex relaxation (2019) IEEE Trans. Ind. Appl., , [CrossRef]
dcterms.bibliographicCitationMa, W.-J., Wang, J., Lu, X., Gupta, V., Optimal operation mode selection for a dc microgrid (2016) IEEE Trans. Smart Grid, 7, pp. 2624-2632. , [CrossRef]
dcterms.bibliographicCitationBaros, D., Voglitsis, D., Papanikolaou, N.P., Kyritsis, A., Rigogiannis, N., Wireless power transfer for distributed energy sources exploitation in dc microgrids (2019) IEEE Trans. Sustain. Energy, 10, pp. 2039-2049. , [CrossRef]
dcterms.bibliographicCitationMontoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Lat. Am. Trans., 15, pp. 890-900. , [CrossRef]
dcterms.bibliographicCitationRahmani-Andebili, M., Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization (2017) Renew. Energy, 113, pp. 1462-1471. , [CrossRef]
dcterms.bibliographicCitationRodríguez, F., Fleetwood, A., Galarza, A., Fontán, L., Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control (2018) Renew. Energy, 126, pp. 855-864. , [CrossRef]
dcterms.bibliographicCitationHome-Ortiz, J.M., Pourakbari-Kasmaei, M., Lehtonen, M., Mantovani, J.R.S., Optimal location-allocation of storage devices and renewable-based dg in distribution systems (2019) Electr. Power Syst. Res., 172, pp. 11-21. , [CrossRef]
dcterms.bibliographicCitationZolfaghari, M., Ghaffarzadeh, N., Ardakani, A.J., Optimal sizing of battery energy storage systems in off-grid micro grids using convex optimization (2019) J. Energy Storage, 23, pp. 44-56. , [CrossRef]
dcterms.bibliographicCitationWu, X., Hu, X., Yin, X., Zhang, C., Qian, S., Optimal battery sizing of smart home via convex programming (2017) Energy, 140, pp. 444-453. , [CrossRef]
dcterms.bibliographicCitationZheng, Y., Hill, D.J., Dong, Z.Y., Multi-agent optimal allocation of energy storage systems in distribution systems (2017) IEEE Trans. Sustain. Energy, 8, pp. 1715-1725. , [CrossRef]
dcterms.bibliographicCitationZheng, Y., Dong, Z.Y., Luo, F.J., Meng, K., Qiu, J., Wong, K.P., Optimal allocation of energy storage system for risk mitigation of discos with high renewable penetrations (2014) IEEE Trans. Power Syst., 29, pp. 212-220. , [CrossRef]
dcterms.bibliographicCitationMehmood, K., Khan, S.U., Lee, S., Haider, Z.M., Rafique, M.K., Kim, C., Optimal sizing and allocation of battery energy storage systems with wind and solar power dgs in a distribution network for voltage regulation considering the lifespan of batteries (2017) IET Renew. Power Gener., 11, pp. 1305-1315. , [CrossRef]
dcterms.bibliographicCitationLakshmi, S., Ganguly, S., Multi-objective planning for the allocation of pv-bess integrated open upqc for peak load shaving of radial distribution networks (2019) J. Energy Storage, 22, pp. 208-218. , [CrossRef]
dcterms.bibliographicCitationYamchi, H.B., Shahsavari, H., Kalantari, N.T., Safari, A., Farrokhifar, M., A cost-efficient application of different battery energy storage technologies in microgrids considering load uncertainty (2019) J. Energy Storage, 22, pp. 17-26. , [CrossRef]
dcterms.bibliographicCitationDas, C.K., Bass, O., Kothapalli, G., Mahmoud, T.S., Habibi, D., Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm (2018) Appl. Energy, 232, pp. 212-228. , [CrossRef]
dcterms.bibliographicCitationWong, L.A., Ramachandaramurthy, V.K., Taylor, P., Ekanayake, J., Walker, S.L., Padmanaban, S., Review on the optimal placement, sizing and control of an energy storage system in the distribution network (2019) J. Energy Storage, 21, pp. 489-504. , [CrossRef]
dcterms.bibliographicCitationMontoya, D., Grajales, A., Grisales, L.F., Castro, C.A., Optimal location and operation of energy storage devices in microgrids in presence of distributed generation (in Spanish) (2017) Rev. Cintex, 22, pp. 97-117
dcterms.bibliographicCitationAmosa, M.K., Majozi, T., Gams supported optimization and predictability study of a multi-objective adsorption process with conflicting regions of optimal operating conditions (2016) Comput. Chem. Eng., 94, pp. 354-361. , [CrossRef]
dcterms.bibliographicCitationNaghiloo, A., Abbaspour, M., Mohammadi-Ivatloo, B., Bakhtari, K., Gams based approach for optimal design and sizing of a pressure retarded osmosis power plant in bahmanshir river of iran (2015) Renew. Sustain. Energy Rev., 52, pp. 1559-1565. , [CrossRef]
dcterms.bibliographicCitationShen, Z., Wei, Z., Sun, G., Chen, S., Representing zip loads in convex relaxations of optimal power flow problems (2019) Int. J. Electr. Power Energy Syst., 110, pp. 372-385. , [CrossRef]
dcterms.bibliographicCitationSamui, A., Samantaray, S., An active islanding detection scheme for inverter-based dg with frequency dependent zip-exponential static load model (2016) Int. J. Electr. Power Energy Syst., 78, pp. 41-50. , [CrossRef]
dcterms.bibliographicCitationMirakyan, A., Meyer-Renschhausen, M., Koch, A., Composite forecasting approach, application for next-day electricity price forecasting (2017) Energy Econ., 66, pp. 228-237. , [CrossRef]
dcterms.bibliographicCitationYang, X., Xu, M., Xu, S., Han, X., Day-ahead forecasting of photovoltaic output power with similar cloud space fusion based on incomplete historical data mining (2017) Appl. Energy, 206, pp. 683-696. , [CrossRef]
dcterms.bibliographicCitationChen, S., Gooi, H., Wang, M., Solar radiation forecast based on fuzzy logic and neural networks (2013) Renew. Energy, 60, pp. 195-201. , [CrossRef]
dcterms.bibliographicCitationSivaneasan, B., Yu, C., Goh, K., Solar forecasting using annwith fuzzy logic pre-processing (2017) Energy Procedia, 143, pp. 727-732. , [CrossRef]
dcterms.bibliographicCitationKim, J., Moon, J., Hwang, E., Kang, P., Recurrent inception convolution neural network for multi short-term load forecasting (2019) Energy Build., 194, pp. 328-341. , [CrossRef]
dcterms.bibliographicCitationMorales-Ruiz, J.C., (2009) Economic Dispatch Model for Colombian Electricity Market, , http://www.xm.com.co/BoletinXM/Documents/XMDIALOG09.pdf, Tech. Rep.
dcterms.bibliographicCitationExpertos en Mercados: Medellin, Colombia. (accessed on 10 July 2019)
dcterms.bibliographicCitationEscobar-Dávila, L.F., Montoya-Giraldo, O.D., Giraldo-Buitrago, D., Global control of the furuta pendulum using artificial neural networks and feedback of state variables (2013) TecnoLogicas, pp. 71-94. , [CrossRef]. (In Spanish)
dcterms.bibliographicCitationZhang, B., Xu, X., Li, X., Chen, X., Ye, Y., Wang, Z., Sentiment analysis through critic learning for optimizing convolutional neural networks with rules (2019) Neurocomputing, 356, pp. 21-30. , [CrossRef]
dcterms.bibliographicCitationCastillo, E., Conejo, A., Pedregal, P., García, R., (2001) Alguacil, Building and Solving Mathematical Programming Models in Engineering and Science, Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, , Wiley: New York, NY, USA. [CrossRef]
dcterms.bibliographicCitationGAMS Free Demo Version, , https://www.gams.com/download/, GAMS Development Corp. (accessed on 15 July 2019)
dcterms.bibliographicCitationMontoya, D., Solving a classical optimization problem using gams optimizer package: Economic dispatch problem implementation (2017) Ingeniería y Ciencia, 13, pp. 39-63. , [CrossRef]
dcterms.bibliographicCitationWires for Medium and High Voltage Levels, , http://www.centelsa.com/pdf/Cables-Media-alta-Tension.pdf, accessed on 10 July 2019
dcterms.bibliographicCitationKocer, M.C., Cengiz, C., Gezer, M., Gunes, D., Cinar, M.A., Alboyaci, B., Onen, A., Assessment of battery storage technologies for a Turkish power network (2019) Sustainability, 11, p. 3669. , [CrossRef]
dcterms.bibliographicCitationWang, P., Wang, W., Xu, D., Optimal sizing of distributed generations in dc microgrids with comprehensive consideration of system operation modes and operation targets (2018) IEEE Access, pp. 31129-31140. , [CrossRef]
dcterms.bibliographicCitationTime Series of Solar Radiation Data, , http://www.soda-pro.com/, (accessed on 5 July 2019). Data, S. S. R
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.3390/en12234494
dc.subject.keywordsArtificial neural networks
dc.subject.keywordsBattery energy storage system
dc.subject.keywordsEconomic dispatch problem
dc.subject.keywordsBattery storage
dc.subject.keywordsCost reduction
dc.subject.keywordsData storage equipment
dc.subject.keywordsElectric batteries
dc.subject.keywordsElectric machine theory
dc.subject.keywordsNeural networks
dc.subject.keywordsNonlinear programming
dc.subject.keywordsScheduling
dc.subject.keywordsBattery energy storage systems
dc.subject.keywordsEconomic dispatch problems
dc.subject.keywordsOperating condition
dc.subject.keywordsOperational periods
dc.subject.keywordsPhotovoltaic sources
dc.subject.keywordsRenewable generators
dc.subject.keywordsShort term prediction
dc.subject.keywordsVoltage dependent load models
dc.subject.keywordsElectric load dispatching
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid55791991200
dc.identifier.orcid55488549400
dc.identifier.orcid37104976300


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.