Mostrar el registro sencillo del ítem
Economic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models
dc.creator | Montoya O.D. | |
dc.creator | Gil-González W. | |
dc.creator | Grisales-Noreña L.F. | |
dc.creator | Orozco-Henao C. | |
dc.creator | Serra F. | |
dc.date.accessioned | 2020-03-26T16:41:28Z | |
dc.date.available | 2020-03-26T16:41:28Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Montoya O.D., Gil-González W., Grisales-Norena L., Orozco-Henao C. y Serra F. (2019) Economic dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models. Energies; Vol. 12, Núm. 23 | |
dc.identifier.issn | 19961073 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9253 | |
dc.description.abstract | This paper addresses the optimal dispatch problem for battery energy storage systems (BESSs) in direct current (DC) mode for an operational period of 24 h. The problem is represented by a nonlinear programming (NLP) model that was formulated using an exponential voltage-dependent load model, which is the main contribution of this paper. An artificial neural network was employed for the short-term prediction of available renewable energy from wind and photovoltaic sources. The NLP model was solved by using the general algebraic modeling system (GAMS) to implement a 30-node test feeder composed of four renewable generators and three batteries. Simulation results demonstrate that the cost reduction for a daily operation is drastically affected by the operating conditions of the BESS, as well as the type of load model used. © 2019 MDPI AG. All rights reserved. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | MDPI AG | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076239314&doi=10.3390%2fen12234494&partnerID=40&md5=5aad556cf10a550cccf8bae524f3e92d | |
dc.source | Scopus2-s2.0-85076239314 | |
dc.title | Economic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models | |
dcterms.bibliographicCitation | Mutarraf, M., Terriche, Y., Niazi, K., Vasquez, J., Guerrero, J., Energy storage systems for shipboard microgrids-a review (2018) Energies, 11, p. 3492. , [CrossRef] | |
dcterms.bibliographicCitation | Hu, J., Shan, Y., Xu, Y., Guerrero, J.M., A coordinated control of hybrid ac/dc microgrids with pv-wind-battery under variable generation and load conditions (2019) Int. J. Electr. Power Energy Syst., 104, pp. 583-592. , [CrossRef] | |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J. Energy Storage, 21, pp. 1-8. , [CrossRef] | |
dcterms.bibliographicCitation | Zou, D., Li, S., Kong, X., Ouyang, H., Li, Z., Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy (2019) Appl. Energy, 237, pp. 646-670. , [CrossRef] | |
dcterms.bibliographicCitation | Zia, M.F., Elbouchikhi, E., Benbouzid, M., Guerrero, J., Energy management system for an islanded microgrid with convex relaxation (2019) IEEE Trans. Ind. Appl., , [CrossRef] | |
dcterms.bibliographicCitation | Ma, W.-J., Wang, J., Lu, X., Gupta, V., Optimal operation mode selection for a dc microgrid (2016) IEEE Trans. Smart Grid, 7, pp. 2624-2632. , [CrossRef] | |
dcterms.bibliographicCitation | Baros, D., Voglitsis, D., Papanikolaou, N.P., Kyritsis, A., Rigogiannis, N., Wireless power transfer for distributed energy sources exploitation in dc microgrids (2019) IEEE Trans. Sustain. Energy, 10, pp. 2039-2049. , [CrossRef] | |
dcterms.bibliographicCitation | Montoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Lat. Am. Trans., 15, pp. 890-900. , [CrossRef] | |
dcterms.bibliographicCitation | Rahmani-Andebili, M., Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization (2017) Renew. Energy, 113, pp. 1462-1471. , [CrossRef] | |
dcterms.bibliographicCitation | Rodríguez, F., Fleetwood, A., Galarza, A., Fontán, L., Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control (2018) Renew. Energy, 126, pp. 855-864. , [CrossRef] | |
dcterms.bibliographicCitation | Home-Ortiz, J.M., Pourakbari-Kasmaei, M., Lehtonen, M., Mantovani, J.R.S., Optimal location-allocation of storage devices and renewable-based dg in distribution systems (2019) Electr. Power Syst. Res., 172, pp. 11-21. , [CrossRef] | |
dcterms.bibliographicCitation | Zolfaghari, M., Ghaffarzadeh, N., Ardakani, A.J., Optimal sizing of battery energy storage systems in off-grid micro grids using convex optimization (2019) J. Energy Storage, 23, pp. 44-56. , [CrossRef] | |
dcterms.bibliographicCitation | Wu, X., Hu, X., Yin, X., Zhang, C., Qian, S., Optimal battery sizing of smart home via convex programming (2017) Energy, 140, pp. 444-453. , [CrossRef] | |
dcterms.bibliographicCitation | Zheng, Y., Hill, D.J., Dong, Z.Y., Multi-agent optimal allocation of energy storage systems in distribution systems (2017) IEEE Trans. Sustain. Energy, 8, pp. 1715-1725. , [CrossRef] | |
dcterms.bibliographicCitation | Zheng, Y., Dong, Z.Y., Luo, F.J., Meng, K., Qiu, J., Wong, K.P., Optimal allocation of energy storage system for risk mitigation of discos with high renewable penetrations (2014) IEEE Trans. Power Syst., 29, pp. 212-220. , [CrossRef] | |
dcterms.bibliographicCitation | Mehmood, K., Khan, S.U., Lee, S., Haider, Z.M., Rafique, M.K., Kim, C., Optimal sizing and allocation of battery energy storage systems with wind and solar power dgs in a distribution network for voltage regulation considering the lifespan of batteries (2017) IET Renew. Power Gener., 11, pp. 1305-1315. , [CrossRef] | |
dcterms.bibliographicCitation | Lakshmi, S., Ganguly, S., Multi-objective planning for the allocation of pv-bess integrated open upqc for peak load shaving of radial distribution networks (2019) J. Energy Storage, 22, pp. 208-218. , [CrossRef] | |
dcterms.bibliographicCitation | Yamchi, H.B., Shahsavari, H., Kalantari, N.T., Safari, A., Farrokhifar, M., A cost-efficient application of different battery energy storage technologies in microgrids considering load uncertainty (2019) J. Energy Storage, 22, pp. 17-26. , [CrossRef] | |
dcterms.bibliographicCitation | Das, C.K., Bass, O., Kothapalli, G., Mahmoud, T.S., Habibi, D., Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm (2018) Appl. Energy, 232, pp. 212-228. , [CrossRef] | |
dcterms.bibliographicCitation | Wong, L.A., Ramachandaramurthy, V.K., Taylor, P., Ekanayake, J., Walker, S.L., Padmanaban, S., Review on the optimal placement, sizing and control of an energy storage system in the distribution network (2019) J. Energy Storage, 21, pp. 489-504. , [CrossRef] | |
dcterms.bibliographicCitation | Montoya, D., Grajales, A., Grisales, L.F., Castro, C.A., Optimal location and operation of energy storage devices in microgrids in presence of distributed generation (in Spanish) (2017) Rev. Cintex, 22, pp. 97-117 | |
dcterms.bibliographicCitation | Amosa, M.K., Majozi, T., Gams supported optimization and predictability study of a multi-objective adsorption process with conflicting regions of optimal operating conditions (2016) Comput. Chem. Eng., 94, pp. 354-361. , [CrossRef] | |
dcterms.bibliographicCitation | Naghiloo, A., Abbaspour, M., Mohammadi-Ivatloo, B., Bakhtari, K., Gams based approach for optimal design and sizing of a pressure retarded osmosis power plant in bahmanshir river of iran (2015) Renew. Sustain. Energy Rev., 52, pp. 1559-1565. , [CrossRef] | |
dcterms.bibliographicCitation | Shen, Z., Wei, Z., Sun, G., Chen, S., Representing zip loads in convex relaxations of optimal power flow problems (2019) Int. J. Electr. Power Energy Syst., 110, pp. 372-385. , [CrossRef] | |
dcterms.bibliographicCitation | Samui, A., Samantaray, S., An active islanding detection scheme for inverter-based dg with frequency dependent zip-exponential static load model (2016) Int. J. Electr. Power Energy Syst., 78, pp. 41-50. , [CrossRef] | |
dcterms.bibliographicCitation | Mirakyan, A., Meyer-Renschhausen, M., Koch, A., Composite forecasting approach, application for next-day electricity price forecasting (2017) Energy Econ., 66, pp. 228-237. , [CrossRef] | |
dcterms.bibliographicCitation | Yang, X., Xu, M., Xu, S., Han, X., Day-ahead forecasting of photovoltaic output power with similar cloud space fusion based on incomplete historical data mining (2017) Appl. Energy, 206, pp. 683-696. , [CrossRef] | |
dcterms.bibliographicCitation | Chen, S., Gooi, H., Wang, M., Solar radiation forecast based on fuzzy logic and neural networks (2013) Renew. Energy, 60, pp. 195-201. , [CrossRef] | |
dcterms.bibliographicCitation | Sivaneasan, B., Yu, C., Goh, K., Solar forecasting using annwith fuzzy logic pre-processing (2017) Energy Procedia, 143, pp. 727-732. , [CrossRef] | |
dcterms.bibliographicCitation | Kim, J., Moon, J., Hwang, E., Kang, P., Recurrent inception convolution neural network for multi short-term load forecasting (2019) Energy Build., 194, pp. 328-341. , [CrossRef] | |
dcterms.bibliographicCitation | Morales-Ruiz, J.C., (2009) Economic Dispatch Model for Colombian Electricity Market, , http://www.xm.com.co/BoletinXM/Documents/XMDIALOG09.pdf, Tech. Rep. | |
dcterms.bibliographicCitation | Expertos en Mercados: Medellin, Colombia. (accessed on 10 July 2019) | |
dcterms.bibliographicCitation | Escobar-Dávila, L.F., Montoya-Giraldo, O.D., Giraldo-Buitrago, D., Global control of the furuta pendulum using artificial neural networks and feedback of state variables (2013) TecnoLogicas, pp. 71-94. , [CrossRef]. (In Spanish) | |
dcterms.bibliographicCitation | Zhang, B., Xu, X., Li, X., Chen, X., Ye, Y., Wang, Z., Sentiment analysis through critic learning for optimizing convolutional neural networks with rules (2019) Neurocomputing, 356, pp. 21-30. , [CrossRef] | |
dcterms.bibliographicCitation | Castillo, E., Conejo, A., Pedregal, P., García, R., (2001) Alguacil, Building and Solving Mathematical Programming Models in Engineering and Science, Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, , Wiley: New York, NY, USA. [CrossRef] | |
dcterms.bibliographicCitation | GAMS Free Demo Version, , https://www.gams.com/download/, GAMS Development Corp. (accessed on 15 July 2019) | |
dcterms.bibliographicCitation | Montoya, D., Solving a classical optimization problem using gams optimizer package: Economic dispatch problem implementation (2017) Ingeniería y Ciencia, 13, pp. 39-63. , [CrossRef] | |
dcterms.bibliographicCitation | Wires for Medium and High Voltage Levels, , http://www.centelsa.com/pdf/Cables-Media-alta-Tension.pdf, accessed on 10 July 2019 | |
dcterms.bibliographicCitation | Kocer, M.C., Cengiz, C., Gezer, M., Gunes, D., Cinar, M.A., Alboyaci, B., Onen, A., Assessment of battery storage technologies for a Turkish power network (2019) Sustainability, 11, p. 3669. , [CrossRef] | |
dcterms.bibliographicCitation | Wang, P., Wang, W., Xu, D., Optimal sizing of distributed generations in dc microgrids with comprehensive consideration of system operation modes and operation targets (2018) IEEE Access, pp. 31129-31140. , [CrossRef] | |
dcterms.bibliographicCitation | Time Series of Solar Radiation Data, , http://www.soda-pro.com/, (accessed on 5 July 2019). Data, S. S. R | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.3390/en12234494 | |
dc.subject.keywords | Artificial neural networks | |
dc.subject.keywords | Battery energy storage system | |
dc.subject.keywords | Economic dispatch problem | |
dc.subject.keywords | Battery storage | |
dc.subject.keywords | Cost reduction | |
dc.subject.keywords | Data storage equipment | |
dc.subject.keywords | Electric batteries | |
dc.subject.keywords | Electric machine theory | |
dc.subject.keywords | Neural networks | |
dc.subject.keywords | Nonlinear programming | |
dc.subject.keywords | Scheduling | |
dc.subject.keywords | Battery energy storage systems | |
dc.subject.keywords | Economic dispatch problems | |
dc.subject.keywords | Operating condition | |
dc.subject.keywords | Operational periods | |
dc.subject.keywords | Photovoltaic sources | |
dc.subject.keywords | Renewable generators | |
dc.subject.keywords | Short term prediction | |
dc.subject.keywords | Voltage dependent load models | |
dc.subject.keywords | Electric load dispatching | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.type.spa | Artículo | |
dc.identifier.orcid | 56919564100 | |
dc.identifier.orcid | 57191493648 | |
dc.identifier.orcid | 55791991200 | |
dc.identifier.orcid | 55488549400 | |
dc.identifier.orcid | 37104976300 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.