Show simple item record

dc.creatorMontes-Grajales D.
dc.creatorPuerta-Guardo H.
dc.creatorEspinosa D.A.
dc.creatorHarris E.
dc.creatorCaicedo-Torres W.
dc.creatorOlivero-Verbel J.
dc.creatorMartínez-Romero E.
dc.date.accessioned2020-03-26T16:41:27Z
dc.date.available2020-03-26T16:41:27Z
dc.date.issued2020
dc.identifier.citationMontes-Grajales D., Puerta-Guardo H., Espinosa D.A., Harris E., Caicedo-Torres W., Olivero-Verbel J. y Martínez-Romero E. (2020) In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Research; Vol. 173
dc.identifier.issn1663542
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9250
dc.description.abstractArboviral diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses represent a major public health problem worldwide, especially in tropical areas where millions of infections occur every year. The aim of this research was to identify candidate molecules for the treatment of these diseases among the drugs currently available in the market, through in silico screening and subsequent in vitro evaluation with cell culture models of DENV and ZIKV infections. Numerous pharmaceutical compounds from antibiotics to chemotherapeutic agents presented high in silico binding affinity for the viral proteins, including ergotamine, antrafenine, natamycin, pranlukast, nilotinib, itraconazole, conivaptan and novobiocin. These five last compounds were tested in vitro, being pranlukast the one that exhibited the best antiviral activity. Further in vitro assays for this compound showed a significant inhibitory effect on DENV and ZIKV infection of human monocytic cells and human hepatocytes (Huh-7 cells) with potential abrogation of virus entry. Finally, intrinsic fluorescence analyses suggest that pranlukast may have some level of interaction with three viral proteins of DENV: envelope, capsid, and NS1. Due to its promising results, suitable accessibility in the market and reduced restrictions compared to other pharmaceuticals; the anti-asthmatic pranlukast is proposed as a drug candidate against DENV, ZIKV, and CHIKV, supporting further in vitro and in vivo assessment of the potential of this and other lead compounds that exhibited good affinity scores in silico as therapeutic agents or scaffolds for the development of new drugs against arboviral diseases. © 2019 Elsevier B.V.eng
dc.description.sponsorshipUniversidad Tecnológica de Pereira, UTP: TRFCI-1P2016 National Institutes of Health, NIH National Institutes of Health, NIH: R01 AI24493 Department of Science, Information Technology and Innovation, Queensland Government, DSITI: 811-2018 Universidad Autónoma de Bucaramanga, UNAB
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier B.V.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075791199&doi=10.1016%2fj.antiviral.2019.104668&partnerID=40&md5=c0e0cf40a4eb953c14b268f2d79de8d4
dc.sourceScopus2-s2.0-85075791199
dc.titleIn silico drug repurposing for the identification of potential candidate molecules against arboviruses infection
dcterms.bibliographicCitationAbdulla, M.-H., Ruelas, D.S., Wolff, B., Snedecor, J., Lim, K.-C., Xu, F., Renslo, A.R., Caffrey, C.R., Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening (2009) PLoS Neglected Trop. Dis., 3, p. e478
dcterms.bibliographicCitationAfzal, O., Kumar, S., Haider, M.R., Ali, M.R., Kumar, R., Jaggi, M., Bawa, S., A review on anticancer potential of bioactive heterocycle quinoline (2015) Eur. J. Med. Chem., 97, pp. 871-910
dcterms.bibliographicCitationAguiar, M., Stollenwerk, N., Dengvaxia: age as surrogate for serostatus (2018) Lancet Infect. Dis.
dcterms.bibliographicCitationAhola, T., Merits, A., Functions of chikungunya virus nonstructural proteins (2016) Chikungunya Virus: Advances in Biology, Pathogenesis, and Treatment, pp. 75-98. , C.M. Okeoma Springer International Publishing Cham
dcterms.bibliographicCitationAkhrymuk, I., Kulemzin, S.V., Frolova, E.I., Evasion of the innate immune response: the old world alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II (2012) J. Virol., 86, pp. 7180-7191
dcterms.bibliographicCitationAllison, S.L., Schalich, J., Stiasny, K., Mandl, C.W., Heinz, F.X., Mutational evidence for an internal fusion peptide in flavivirus envelope protein E (2001) J. Virol., 75, pp. 4268-4275
dcterms.bibliographicCitationAnnane, D., Decaux, G., Smith, N., Efficacy and safety of oral conivaptan, a vasopressin-receptor antagonist, evaluated in a randomized, controlled trial in patients with euvolemic or hypervolemic hyponatremia (2009) Am. J. Med. Sci., 337, pp. 28-36
dcterms.bibliographicCitationBalaguer, M.P., Fajardo, P., Gartner, H., Gomez-Estaca, J., Gavara, R., Almenar, E., Hernandez-Munoz, P., Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin (2014) Int. J. Food Microbiol., 173, pp. 62-71
dcterms.bibliographicCitationBastos, L.F.S., Coelho, M.M., Drug repositioning: playing dirty to kill pain (2014) CNS Drugs, 28, pp. 45-61
dcterms.bibliographicCitationBeatty, P.R., Puerta-Guardo, H., Killingbeck, S.S., Glasner, D.R., Hopkins, K., Harris, E., Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination (2015) Sci. Transl. Med., 7
dcterms.bibliographicCitationBekerman, E., Einav, S., Combating emerging viral threats (2015) Science, 348, pp. 282-283
dcterms.bibliographicCitationBekerman, E., Neveu, G., Shulla, A., Brannan, J., Pu, S.Y., Wang, S., Xiao, F., Einav, S., Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects (2017) J. Clin. Investig., 127, pp. 1338-1352
dcterms.bibliographicCitationBernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Olga, K., Tasumi, M., The protein Data Bank. A computer-based archival file for macromolecular structures (1977) Eur. J. Biochem., 80, pp. 319-324
dcterms.bibliographicCitationByrd, C.M., Dai, D., Grosenbach, D.W., Berhanu, A., Jones, K.F., Cardwell, K.B., Schneider, C., Jordan, R., A novel inhibitor of dengue virus replication that targets the capsid protein (2013) Antimicrob. Agents Chemother., 57, pp. 15-25
dcterms.bibliographicCitationCabarcas-Montalvo, M., Maldonado-Rojas, W., Montes-Grajales, D., Bertel-Sevilla, A., Wagner-Döbler, I., Sztajer, H., Reck, M., Olivero-Verbel, J., Discovery of antiviral molecules for dengue: in silico search and biological evaluation (2016) Eur. J. Med. Chem., 110, pp. 87-97
dcterms.bibliographicCitationCalvo, E.P., Coronel-Ruiz, C., Velazco, S., Velandia-Romero, M., Castellanos, J.E., Diagnóstico diferencial dengue-chikungunya en pacientes pediátricos (2015) Biomedica, 36
dcterms.bibliographicCitationCarrilo-Muñoz, A.J., Tur, C., Torres, J., Seymour, A.C., In-vitro antifungal activity of sertaconazole, bifonazole, ketoconazole, and miconazole against yeasts of the Candida genus (1996) J. Antimicrob. Chemother., 37, pp. 815-819
dcterms.bibliographicCitationChan, J.F.W., Yip, C.C.Y., Tsang, J.O.L., Tee, K.M., Cai, J.P., Chik, K.K.H., Zhu, Z., Yuen, K.Y., Differential cell line susceptibility to the emerging Zika virus: implications for disease pathogenesis, non-vector-borne human transmission and animal reservoirs (2016) Emerg. Microb. Infect., 5, p. e93
dcterms.bibliographicCitationChant, C., Rybak, M.J., Quinupristin/dalfopristin (RP 59500): a new streptogramin antibiotic (1995) Ann. Pharmacother., 29, pp. 1022-1027
dcterms.bibliographicCitationChen, Y., Maguire, T., Marks, R.M., Demonstration of binding of dengue virus envelope protein to target cells (1996) J. Virol., 70, pp. 8765-8772
dcterms.bibliographicCitationCholo, M.C., Mothiba, M.T., Fourie, B., Anderson, R., Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline (2017) J. Antimicrob. Chemother., 72, pp. 338-353
dcterms.bibliographicCitationCrill, W.D., Roehrig, J.T., Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells (2001) J. Virol., 75, pp. 7769-7773
dcterms.bibliographicCitationDai, L., Song, J., Lu, X., Deng, Y.Q., Musyoki, A.M., Cheng, H., Zhang, Y., Gao, G.F., Structures of the zika virus envelope protein and its complex with a flavivirus broadly protective antibody (2016) Cell Host Microbe, 19, pp. 696-704
dcterms.bibliographicCitationde Gara, C., Taylor, M., Hedges, A., Assessment of analgesic drugs in soft tissue injuries presenting to an accident and emergency department—a comparison of antrafenine, paracetamol and placebo (1982) Postgrad. Med. J., 58, pp. 489-492
dcterms.bibliographicCitationde Silva, A.M., Rey, F.A., Young, P.R., Hilgenfeld, R., Vasudevan, S.G., Viral entry and NS1 as potential antiviral drug targets (2018) Advances in Experimental Medicine and Biology, pp. 107-113
dcterms.bibliographicCitationEbi, K.L., Nealon, J., Dengue in a changing climate (2016) Environ. Res., 151, pp. 115-123
dcterms.bibliographicCitationEglen, R.M., Schneider, G., Bohm, H., Bohm, H.J., Schneider, G., High throughput screening and virtual screening: entry points to drug discovery. Virtual screen (2000) Bioact. Mol., 10, pp. 59-79
dcterms.bibliographicCitationErbel, P., Schiering, N., D'Arcy, A., Renatus, M., Kroemer, M., Lim, S.P., Yin, Z., Hommel, U., Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus (2006) Nat. Struct. Mol. Biol., 13, pp. 372-373
dcterms.bibliographicCitationFinlay, A.C., Hobby, G.L., Hochstein, F., Lees, T.M., Lenert, T.F., Means, J.A., P'an, S.Y., Kane, J.H., Viomycin, a new antibiotic active against mycobacteria (1951) Am. Rev. Tuberc. Pulm. Dis., 63, pp. 1-3
dcterms.bibliographicCitationFlasche, S., Jit, M., Rodríguez-Barraquer, I., Coudeville, L., Recker, M., Koelle, K., Milne, G., Cummings, D.A.T., The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): a model comparison study (2016) PLoS Med., 13
dcterms.bibliographicCitationFreel Meyers, C.L., Oberthür, M., Anderson, J.W., Kahne, D., Walsh, C.T., Initial characterization of novobiocic acid noviosyl transferase activity of NovM in biosynthesis of the antibiotic novobiocin (2003) Biochemistry, 42, pp. 4179-4189
dcterms.bibliographicCitationFros, J.J., Liu, W.J., Prow, N.A., Geertsema, C., Ligtenberg, M., Vanlandingham, D.L., Schnettler, E., Pijlman, G.P., Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling (2010) J. Virol., 84, pp. 10877-10887
dcterms.bibliographicCitationFros, J.J., Major, L.D., Scholte, F.E.M., Gardner, J., van Hemert, M.J., Suhrbier, A., Pijlman, G.P., Chikungunya virus non-structural protein 2-mediated host shut-off disables the unfolded protein response (2015) J. Gen. Virol., 96, pp. 580-589
dcterms.bibliographicCitationGardner, L.M., Bóta, A., Gangavarapu, K., Kraemer, M.U.G., Grubaugh, N.D., Inferring the risk factors behind the geographical spread and transmission of Zika in the Americas (2018) PLoS Neglected Trop. Dis., 12
dcterms.bibliographicCitationGaroff, H., Sjoberg, M., Cheng, R.H., Budding of alphaviruses (2004) Virus Res., 106, pp. 103-116
dcterms.bibliographicCitationGlasner, D.R., Puerta-Guardo, H., Beatty, P.R., Harris, E., The good, the bad, and the shocking: the multiple roles of dengue virus nonstructural protein 1 in protection and pathogenesis (2018) Annu. Rev. Virol., 5, pp. 227-253
dcterms.bibliographicCitationGonzález-Molleda, L., Wang, Y., Yuan, Y., Potent antiviral activity of topoisomerase I and II inhibitors against Kaposi's sarcoma-associated herpesvirus (2012) Antimicrob. Agents Chemother., 56, pp. 893-902
dcterms.bibliographicCitationGuzman, M.G., Alvarez, M., Halstead, S.B., Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection (2013) Arch. Virol., 158, pp. 1445-1459
dcterms.bibliographicCitationHallengärd, D., Kakoulidou, M., Lulla, A., Kümmerer, B.M., Johansson, D.X., Mutso, M., Lulla, V., Liljeström, P., Novel attenuated Chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice (2014) J. Virol., 88, pp. 2858-2866
dcterms.bibliographicCitationHalstead, S.B., Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age (2017) Vaccine, 35, pp. 6355-6358
dcterms.bibliographicCitationHarrison, S.C., Viral membrane fusion (2015) Virology, 479, pp. 498-507
dcterms.bibliographicCitationHenß, L., Beck, S., Weidner, T., Biedenkopf, N., Sliva, K., Weber, C., Becker, S., Schnierle, B.S., Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry (2016) Virol. J., 13, p. 149
dcterms.bibliographicCitationIakovlev, V.P., Kaplar-Vuchevats, M., Cefpiramide–a new cephalosporin antibiotic. Antibiot. i khimioterapiia = Antibiot (1994) chemoterapy [sic], 39, pp. 56-64
dcterms.bibliographicCitationKeam, S.J., Lyseng-Williamson, K.A., Goa, K.L., Korenblat, P.E., Lockey, R.F., Obase, Y., Rovati, G.E., Tamura, G., Pranlukast: a review of its use in the management of asthma (2003) Drugs
dcterms.bibliographicCitationKielian, M., Chanel-Vos, C., Liao, M., Alphavirus entry and membrane fusion (2010) Viruses
dcterms.bibliographicCitationKim, S., Kim, H., Ryu, Y., Lee, J., Efficacy and safety of modified pranlukast (Prakanon®) compared with pranlukast (Onon®): a randomized, open-label, crossover study (2016) ncbi.nlm.nih.gov, 10, pp. 36-45. , open respiratory, 2016, U
dcterms.bibliographicCitationKlumpp, K., Crépin, T., Capsid proteins of enveloped viruses as antiviral drug targets (2014) Curr. Opin. Virol., 5, pp. 63-71
dcterms.bibliographicCitationKraus, A.A., Messer, W., Haymore, L.B., De Silva, A.M., Comparison of plaque- and flow cytometry-based methods for measuring dengue virus neutralization (2007) J. Clin. Microbiol., 45, pp. 3777-3780
dcterms.bibliographicCitationLangedijk, J., Continuous Innovation in the Drug Life Cycle (2016), Elsevier
dcterms.bibliographicCitationLaw, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A., Wishart, D.S., DrugBank 4.0: shedding new light on drug metabolism (2014) Nucleic Acids Res., 42, pp. D1091-D1097
dcterms.bibliographicCitationLazear, H.M., Govero, J., Smith, A.M., Platt, D.J., Fernandez, E., Miner, J.J., Diamond, M.S., A mouse model of zika virus pathogenesis (2016) Cell Host Microbe, 19, pp. 720-730
dcterms.bibliographicCitationLiang, Q., Luo, Z., Zeng, J., Chen, W., Foo, S., Lee, S., Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy (2016) Cell, J.G.-C. stem, 19, pp. 663-671. , 2016, U Elsevier
dcterms.bibliographicCitationLim, S.P., Noble, C.G., Seh, C.C., Soh, T.S., El Sahili, A., Chan, G.K.Y., Lescar, J., Yokokawa, F., Potent allosteric dengue virus NS5 polymerase inhibitors: mechanism of action and resistance profiling (2016) PLoS Pathog., 12
dcterms.bibliographicCitationLiu-Helmersson, J., Quam, M., Wilder-Smith, A., Stenlund, H., Ebi, K., Massad, E., Rocklöv, J., Climate change and Aedes vectors: 21st century projections for dengue transmission in europe (2016) EBioMedicine, 7, pp. 267-277
dcterms.bibliographicCitationLópez-Camacho, C., Abbink, P., Larocca, R.A., Dejnirattisai, W., Boyd, M., Badamchi-Zadeh, A., Wallace, Z.R., Reyes-Sandoval, A., Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors (2018) nature.com, 9, p. 2441
dcterms.bibliographicCitationLow, J.G.H., Ooi, E.E., Vasudevan, S.G., Current status of dengue therapeutics research and development (2017) J. Infect. Dis., 215, pp. S96-S102
dcterms.bibliographicCitationMa, D.-L., Chan, D.S.-H., Leung, C.-H., Drug repositioning by structure-based virtual screening (2013) Chem. Soc. Rev., 42, pp. 2130-2141
dcterms.bibliographicCitationMa, L., Jones, C.T., Groesch, T.D., Kuhn, R.J., Post, C.B., Solution structure of dengue virus capsid protein reveals another fold (2004) Proc. Natl. Acad. Sci. United States Am., 101, pp. 3414-3419
dcterms.bibliographicCitationMakhatadze, G.I., Privalov, P.L., Energetics of protein structure (1995) Adv. Protein Chem., 47, pp. 307-425
dcterms.bibliographicCitationMarsh, M., Pelchen-Matthews, A., Entry of animal viruses into cells (1993) Rev. Med. Virol., 3, pp. 173-185
dcterms.bibliographicCitationMás, V., Melero, J.A., Entry of enveloped viruses into host cells: membrane fusion (2013) Structure and Physics of Viruses: an Integrated Textbook, pp. 467-487. , M.G. Mateu Springer Netherlands Dordrecht
dcterms.bibliographicCitationMayer, S.V., Tesh, R.B., Vasilakis, N., The emergence of arthropod-borne viral diseases: a global prospective on dengue, chikungunya and zika fevers (2017) Acta Trop., 166, pp. 155-163
dcterms.bibliographicCitationMazzola, E.P., Melin, J.A., Wayland, L.G., 13C-NMR spectroscopy of three tetracycline antibiotics: minocycline hydrochloride, meclocycline, and rolitetracycline (1980) J. Pharm. Sci., 69, pp. 229-230
dcterms.bibliographicCitationMehndiratta, M.M., Wadhai, S.A., Tyagi, B.K., Gulati, N.S., Sinha, M., Drug repositioning (2016) Int. J. Epilepsy, 3, pp. 91-94
dcterms.bibliographicCitationMishra, P., Kumar, A., Mamidi, P., Kumar, S., Basantray, I., Saswat, T., Das, I., Chattopadhyay, S., Inhibition of chikungunya virus replication by 1-[(2-Methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea(MBZM-N-IBT) (2016) Sci. Rep., 6, p. 20122
dcterms.bibliographicCitationModis, Y., Ogata, S., Clements, D., Harrison, S.C., Structure of the dengue virus envelope protein after membrane fusion (2004) Nature, 427, pp. 313-319
dcterms.bibliographicCitationMontes-Grajales, D., Bernardes, G.J.L., Olivero-Verbel, J., Urban endocrine disruptors targeting breast cancer proteins (2016) Chem. Res. Toxicol., 29, pp. 150-161
dcterms.bibliographicCitationMontes-Grajales, D., Olivero-Verbel, J., Computer-aided identification of novel protein targets of bisphenol A (2013) Toxicol. Lett., 222, pp. 312-320
dcterms.bibliographicCitationMontes-Grajales, D., Olivero-Verbel, J., Cabarcas-Montalvo, M., DDT and derivatives may target insulin pathway proteins (2013) J. Brazilian Chem. Soc.
dcterms.bibliographicCitationMontoya, M., Collins, M., Dejnirattisai, W., Katzelnick, L.C., Puerta-Guardo, H., Jadi, R., Schildhauer, S., Harris, E., Longitudinal analysis of antibody cross-neutralization following zika virus and dengue virus infection in Asia and the Americas (2018) J. Infect. Dis., 218, pp. 536-545
dcterms.bibliographicCitationMorris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility (2009) J. Comput. Chem., 30, pp. 2785-2791
dcterms.bibliographicCitationNolting, A., Costa, T.D., Rand, K.H., Derendorf, H., Pharmacokinetic-pharmacodynamic modeling of the antibiotic effect of piperacillin in vitro (1996) Pharm. Res., 13, pp. 91-96
dcterms.bibliographicCitationO'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R., Open Babel: an open chemical toolbox (2011) J. Cheminf., 3, p. 33
dcterms.bibliographicCitationO'Connor, K.A., Roth, B.L., Finding new tricks for old drugs: an efficient route for public-sector drug discovery (2005) Nat. Rev. Drug Discov., 4, pp. 1005-1014
dcterms.bibliographicCitationOliveira, A.F., Teixeira, R.R., Oliveira, A.S., Souza, A.P., Silva, M.L., Paula, S.O., Potential antivirals: natural products targeting replication enzymes of dengue and chikungunya viruses (2017) Mol
dcterms.bibliographicCitationOliveira, E.R.A., Mohana-Borges, R., de Alencastro, R.B., Horta, B.A.C., The flavivirus capsid protein: structure, function and perspectives towards drug design (2017) Virus Res., 227, pp. 115-123
dcterms.bibliographicCitationPatil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., Varma, A.K., Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing (2010) PLoS One, 5
dcterms.bibliographicCitationPfaller, M.A., Flamm, R.K., Duncan, L.R., Mendes, R.E., Jones, R.N., Sader, H.S., Antimicrobial activity of tigecycline and cefoperazone/sulbactam tested against 18,386 Gram-negative organisms from Europe and the Asia-Pacific region (2013–2014) (2017) Diagn. Microbiol. Infect. Dis., 88, pp. 177-183
dcterms.bibliographicCitationPu, S.Y., Xiao, F., Schor, S., Bekerman, E., Zanini, F., Barouch-Bentov, R., Nagamine, C.M., Einav, S., Feasibility and biological rationale of repurposing sunitinib and erlotinib for dengue treatment (2018) Antivir. Res., 155, pp. 67-75
dcterms.bibliographicCitationPuerta-Guardo, H., Glasner, D.R., Espinosa, D.A., Biering, S.B., Patana, M., Ratnasiri, K., Wang, C., Harris, E., Flavivirus NS1 triggers tissue-specific vascular endothelial dysfunction reflecting disease tropism (2019) Cell Rep., 26, pp. 1598-1613. , e8
dcterms.bibliographicCitationPuerta-Guardo, H., Tabata, T., Petitt, M., Dimitrova, M., Glasner, D.R., Pereira, L., Harris, E., Zika virus non-structural protein 1 disrupts glycosaminoglycans and causes permeability in developing human placentas (2019) J. Infect. Dis.
dcterms.bibliographicCitationPushpakom, S., Iorio, F., Eyers, P.A., Escott, K.J., Hopper, S., Wells, A., Doig, A., Pirmohamed, M., Drug repurposing: progress, challenges and recommendations (2018) Nat. Rev. Drug Discov.
dcterms.bibliographicCitationR Core Team, A Language and Environment for Statistical Computing (2016), R Foundation for statistical computing Vienna, Austria 2015
dcterms.bibliographicCitationRodenhuis-Zybert, I.A., Wilschut, J., Smit, J.M., Dengue virus life cycle: viral and host factors modulating infectivity (2010) Cell. Mol. Life Sci., 67, pp. 2773-2786
dcterms.bibliographicCitationRoy, C.J., Adams, A.P., Wang, E., Plante, K., Gorchakov, R., Seymour, R.L., Vinet-Oliphant, H., Weaver, S.C., Chikungunya vaccine candidate is highly attenuated and protects nonhuman primates against telemetrically monitored disease following a single dose (2014) J. Infect. Dis., 209, pp. 1891-1899
dcterms.bibliographicCitationSamsa, M.M., Mondotte, J.A., Iglesias, N.G., Assunção-Miranda, I., Barbosa-Lima, G., Da Poian, A.T., Bozza, P.T., Gamarnik, A.V., Dengue virus capsid protein usurps lipid droplets for viral particle formation (2009) PLoS Pathog.
dcterms.bibliographicCitationSamsa, M.M., Mondotte, J.A., Iglesias, N.G., Assunção-Miranda, I., Barbosa-Lima, G., Da Poian, A.T., Bozza, P.T., Gamarnik, A.V., Dengue virus capsid protein usurps lipid droplets for viral particle formation (2009) PLoS Pathog., 5
dcterms.bibliographicCitationScherwitzl, I., Mongkolsapaja, J., Screaton, G., Recent advances in human flavivirus vaccines (2017) Curr. Opin. Virol., 23, pp. 95-101
dcterms.bibliographicCitationSchneider, M., Korzeniewski, N., Merkle, K., Schüler, J., Grüllich, C., Hadaschik, B., Hohenfellner, M., Duensing, S., The tyrosine kinase inhibitor nilotinib has antineoplastic activity in prostate cancer cells but up-regulates the ERK survival signal—implications for targeted therapies1Equal contributions (2015) Urol. Oncol. Semin. Orig. Investig., 33. , 72.e1-72.e7
dcterms.bibliographicCitationSeeliger, D., de Groot, B.L., Ligand docking and binding site analysis with PyMOL and Autodock/Vina (2010) J. Comput. Aided Mol. Des., 24, pp. 417-422
dcterms.bibliographicCitationSekiguchi, J., Shuman, S., Novobiocin inhibits vaccinia virus replication by blocking virus assembly (1997) Virology, 235, pp. 129-137
dcterms.bibliographicCitationSmalley, C., Erasmus, J.H., Chesson, C.B., Beasley, D.W.C., Status of research and development of vaccines for chikungunya (2016) Vaccine, 34, pp. 2976-2981
dcterms.bibliographicCitationSoto-Acosta, R., Mosso, C., Cervantes-Salazar, M., Puerta-Guardo, H., Medina, F., Favari, L., Ludert, J.E., Del Angel, R.M., The increase in cholesterol levels at early stages after dengue virus infection correlates with an augment in LDL particle uptake and HMG-CoA reductase activity (2013) Virology, 442, pp. 132-147
dcterms.bibliographicCitationStein, C.A., LaRocca, R.V., Thomas, R., McAtee, N., Myers, C.E., Suramin: an anticancer drug with a unique mechanism of action (1989) J. Clin. Oncol., 7
dcterms.bibliographicCitationSubudhi, B.B., Chattopadhyay, S., Mishra, P., Kumar, A., Current strategies for inhibition of Chikungunya infection (2018) Viruses
dcterms.bibliographicCitationTfelt-Hansen, P.C., Koehler, P.J., History of the use of ergotamine and dihydroergotamine in migraine from 1906 and onward (2008) Cephalalgia, 28, pp. 877-886
dcterms.bibliographicCitationTomlinson, S.M., Malmstrom, R.D., Russo, A., Mueller, N., Pang, Y.-P., Watowich, S.J., Structure-based discovery of dengue virus protease inhibitors (2009) Antivir. Res., 82, pp. 110-114
dcterms.bibliographicCitationTrott, O., Olson, A.J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading (2010) J. Comput. Chem., 31, pp. 455-461
dcterms.bibliographicCitationVillegas, L.E.M., Campolina, T.B., Barnabe, N.R., Orfano, A.S., Chaves, B.A., Norris, D.E., Pimenta, P.F.P., Secundino, N.F.C., Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis (2018) PLoS One, 13
dcterms.bibliographicCitationVoss, J.E., Vaney, M.-C., Duquerroy, S., Vonrhein, C., Girard-Blanc, C., Crublet, E., Thompson, A., Rey, F.A., Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography (2010) Nature, 468, pp. 709-712
dcterms.bibliographicCitationWalker, T., Jeffries, C.L., Mansfield, K.L., Johnson, N., Mosquito cell lines: history, isolation, availability and application to assess the threat of arboviral transmission in the United Kingdom (2014) Parasites Vectors, 7, p. 382
dcterms.bibliographicCitationWarnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley, T., Moeller, S., Gplots: Various R Programming Tools for Plotting Data (2009), R Packag. version
dcterms.bibliographicCitationWeaver, S.C., Arrival of chikungunya virus in the new world: prospects for spread and impact on public health (2014) PLoS Neglected Trop. Dis., 8
dcterms.bibliographicCitationWeber, C., Berberich, E., von Rhein, C., Henß, L., Hildt, E., Schnierle, B.S., Identification of functional determinants in the chikungunya virus E2 protein (2017) PLoS Neglected Trop. Dis., 11
dcterms.bibliographicCitationWhitehead, S.S., Subbarao, K., Which dengue vaccine approach is the most promising, and should we Be concerned about enhanced disease after vaccination?: the risks of incomplete immunity to dengue virus revealed by vaccination (2017) Cold Spring Harb. Perspect. Biol.
dcterms.bibliographicCitationWolber, G., Langer, T., LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters (2005) J. Chem. Inf. Model., 45, pp. 160-169
dcterms.bibliographicCitationWolf, D., Djian, E., Beider, K., Shimoni, A., Nagler, A., Nilotinib exhibits an in vitro antiviral activity against human cytomegalovirus (HCMV): potential clinical applications (2012) Am. Soc. Hematol., 120, p. 4666
dcterms.bibliographicCitationWorld Health Organization, Zika virus (2018), https://www.who.int/news-room/fact-sheets/detail/zika-virus, [WWW Document] accessed 7.10.19
dcterms.bibliographicCitationWorld Health Organization, Chikungunya (2017), https://www.who.int/emergencies/diseases/chikungunya/en/, [WWW Document]
dcterms.bibliographicCitationWorld Health Organization, Facsheet dengue and severe dengue (2016), http://www.who.int/mediacentre/factsheets/fs117/en/, [WWW Document]. July 2016
dcterms.bibliographicCitationXie, X., Zou, J., Wang, Q.Y., Shi, P.Y., Targeting dengue virus NS4B protein for drug discovery (2015) Antivir. Res.
dcterms.bibliographicCitationYap, T.L., Xu, T., Chen, Y.-L., Malet, H., Egloff, M.-P., Canard, B., Vasudevan, S.G., Lescar, J., Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution (2007) J. Virol., 81, pp. 4753-4765
dcterms.bibliographicCitationYoung, T., Abel, R., Kim, B., Berne, B.J., Friesner, R.A., Motifs for molecular recognition exploiting hydrophobic enclosure in protein–ligand binding (2007) Proc. Natl. Acad. Sci., 104, pp. 808-813
dcterms.bibliographicCitationZhang, J., Li, C., Lin, Y., Shao, Y., Li, S., Computational drug repositioning using collaborative filtering via multi-source fusion (2017) Expert Syst. Appl.
dcterms.bibliographicCitationZhang, X., Jia, R., Shen, H., Wang, M., Yin, Z., Cheng, A., Structures and functions of the envelope glycoprotein in flavivirus infections (2017) Viruses, 9, p. 338
dcterms.bibliographicCitationZuckerman, J.M., Tunkel, A.R., Itraconazole: a new triazole antifungal agent (1994) Infect. Control Hosp. Epidemiol., 15, pp. 397-410
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.antiviral.2019.104668
dc.subject.keywordsAntiviral
dc.subject.keywordsChikungunya
dc.subject.keywordsDengue
dc.subject.keywordsVirtual screening
dc.subject.keywordsVirus entry
dc.subject.keywordsZika
dc.subject.keywordsAntrafenine
dc.subject.keywordsConivaptan
dc.subject.keywordsErgotamine
dc.subject.keywordsItraconazole
dc.subject.keywordsNatamycin
dc.subject.keywordsNilotinib
dc.subject.keywordsNovobiocin
dc.subject.keywordsPranlukast
dc.subject.keywordsViral protein
dc.subject.keywordsAntiviral activity
dc.subject.keywordsArbovirus
dc.subject.keywordsArticle
dc.subject.keywordsChikungunya
dc.subject.keywordsComputer model
dc.subject.keywordsCrystallography
dc.subject.keywordsDengue
dc.subject.keywordsDrug protein binding
dc.subject.keywordsDrug repositioning
dc.subject.keywordsFluorescence analysis
dc.subject.keywordsFluorescence microscopy
dc.subject.keywordsHuh-7 cell line
dc.subject.keywordsHuman
dc.subject.keywordsHuman cell
dc.subject.keywordsIn vitro study
dc.subject.keywordsPriority journal
dc.subject.keywordsVirus capsid
dc.subject.keywordsVirus entry
dc.subject.keywordsZika fever
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThe authors wish to thank the Administrative Department of Science, Technology and Innovation of Colombia [Grant: Colciencias No. 811-2018 ], Universidad Nacional Autónoma de México [Grant: Programa de Becas Posdoctorales en la UNAM 2016 ], Universidad Tecnológica de Bolívar [Grant: TRFCI-1P2016 ] and the National Institutes of Health [NIH grant R01 AI24493 ] for their financial support. Appendix A
dc.description.notesA continuación se relacionan los compuestos químicos y su número de registro CAS (Chemical Abstracts Service) antrafenine, 55300-29-3; conivaptan, 168626-94-6, 210101-16-9; ergotamine, 113-15-5, 52949-35-6; itraconazole, 84625-61-6; natamycin, 52882-37-8, 7681-93-8; nilotinib, 641571-10-0; novobiocin, 1476-53-5, 303-81-1, 39301-00-3, 4309-70-0; pranlukast, 103177-37-3
dc.type.spaArtículo
dc.identifier.orcid55670024000
dc.identifier.orcid35409926100
dc.identifier.orcid20734251800
dc.identifier.orcid7403257174
dc.identifier.orcid55782426500
dc.identifier.orcid9736353600
dc.identifier.orcid7005113225


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.