Mostrar el registro sencillo del ítem
Effect of a commercial air valve on the rapid filling of a single pipeline: A numerical and experimental analysis
dc.creator | Coronado Hernández, Óscar Enrique | |
dc.creator | Besharat M. | |
dc.creator | Fuertes Miquel, Vicente S. | |
dc.creator | Ramos H.M. | |
dc.date.accessioned | 2020-03-26T16:41:27Z | |
dc.date.available | 2020-03-26T16:41:27Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Coronado-Hernández O.E., Besharat M., Fuertes-Miquel V.S. y Ramos H.M. (2019) Effect of a commercial air valve on the rapid filling of a single pipeline: A numerical and experimental analysis. Water (Switzerland); Vol. 11, Núm. 9 | |
dc.identifier.issn | 20734441 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9249 | |
dc.description.abstract | The filling process in water pipelines produces pressure surges caused by the compression of air pockets. In this sense, air valves should be appropriately designed to expel sufficient air to avoid pipeline failure. Recent studies concerning filling maneuvers have been addressed without considering the behavior of air valves. This work shows a mathematical model developed by the authors which is capable of simulating the main hydraulic and thermodynamic variables during filling operations under the effect of the air valve in a single pipeline, which is based on the mass oscillation equation, the air-water interface, the polytropic equation of the air phase, the air mass equation, and the air valve characterization. The mathematical model is validated in a 7.3-m-long pipeline with a 63-mm nominal diameter. A commercial air valve is positioned in the highest point of the hydraulic installation. Measurements indicate that the mathematical model can be used to simulate this phenomenon by providing good accuracy. © 2019 by the authors. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | MDPI AG | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072199832&doi=10.3390%2fw11091814&partnerID=40&md5=f3176e13227edb1acaaad22bd5a4cc59 | |
dc.source | Scopus2-s2.0-85072199832 | |
dc.title | Effect of a commercial air valve on the rapid filling of a single pipeline: A numerical and experimental analysis | |
dcterms.bibliographicCitation | Abreu, J., Cabrera, E., Izquierdo, J., García-Serra, J., Flow Modeling in Pressurized Systems Revisited (1999) J. Hydraul. Eng, 125, pp. 1154-1169 | |
dcterms.bibliographicCitation | Azoury, P.H., Baasiri, M., Najm, H., Effect of Valve-Closure Schedule on Water Hammer (1986) J. Hydraul. Eng, 112, pp. 890-903 | |
dcterms.bibliographicCitation | Himr, D., Investigation and Numerical Simulation of a Water Hammer with Column Separation (2015) J. Hydraul. Eng, 141 | |
dcterms.bibliographicCitation | Simpson, A.R., Wylie, E.B., LargeWater-Hammer Pressures for Column Separation in Pipelines (1991) J. Hydraul. Eng, 117, pp. 1310-1316 | |
dcterms.bibliographicCitation | Saemi, S., Raisee, M., Cervantes, M.J., Nourbakhsh, A., Computation of two-and three-dimensional water hammer flows (2019) J. Hydraul. Res, 57, pp. 386-404 | |
dcterms.bibliographicCitation | Karney, B.W., Simpson, A.R., In-line check valves for water hammer control (2007) J. Hydraul. Res, 45, pp. 547-554 | |
dcterms.bibliographicCitation | Triki, A., Water-Hammer Control in Pressurized-Pipe Flow Using a Branched Polymeric Penstock (2017) J. Pipeline Syst. Eng. Pract, 8 | |
dcterms.bibliographicCitation | Triki, A., Fersi, M., Further investigation on the water-hammer control branching strategy in pressurized steel-piping systems (2018) Int. J. Press. Vessel. Pip, 165, pp. 135-144 | |
dcterms.bibliographicCitation | Stephenson, D., Simple Guide for Design of Air Vessels for Water Hammer Protection of Pumping Lines (2002) J. Hydraul. Eng, 128, pp. 792-797 | |
dcterms.bibliographicCitation | Besharat, M., Tarinejad, R., Ramos, H.M., The Effect ofWater Hammer on a Confined Air Pocket Towards Flow Energy Storage System (2016) J. Water Supply: Res. Technol.-AQUA, 65, pp. 116-126 | |
dcterms.bibliographicCitation | Besharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M., Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis (2016) Water Resour. Manag, 30, pp. 2687-2702 | |
dcterms.bibliographicCitation | Besharat, M., Viseu, M.T., Ramos, H.M., Experimental Study of Air Vessel Sizing to either Store Energy or Protect the System in the Water Hammer Occurrence (2017) Water, 9, p. 63 | |
dcterms.bibliographicCitation | Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučkovič, S., Hou, Q., van'tWestende, J.M.C., Emptying of Large-Scale Pipeline by Pressurized Air (2012) J. Hydraul. Eng, 138, pp. 1090-1100 | |
dcterms.bibliographicCitation | Tijsseling, A., Hou, Q., Bozkus, Z., Laanearu, J., Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (2016) J. Press. Vessel Technol, 138 | |
dcterms.bibliographicCitation | Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M., Backflow Air and Pressure Analysis in Emptying Pipeline Containing Entrapped Air Pocket (2018) Urban Water J, 15, pp. 769-779 | |
dcterms.bibliographicCitation | Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket (2018) Urban Water J, 15, pp. 346-352 | |
dcterms.bibliographicCitation | Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., Martínez-Solano, F.J., RigidWater Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air (2018) J. Hydraul. Eng, 144 | |
dcterms.bibliographicCitation | Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M., Computational Fluid Dynamics for Sub-Atmospheric Pressure Analysis in Pipe Drainage (2019) J. Hydraul. Res, pp. 1-13 | |
dcterms.bibliographicCitation | Vasconcelos, J.G., Wright, S.J., Rapid Flow Startup in Filled Horizontal Pipelines (2008) J. Hydraul. Eng, 134, pp. 984-992 | |
dcterms.bibliographicCitation | Trindade, B.C., Vasconcelos, J.G., Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions (2013) J. Hydraul. Eng, 139, pp. 921-934 | |
dcterms.bibliographicCitation | Malekpour, A., Karney, B., Nault, J., Physical understanding of sudden pressurization of pipe systems with entrapped air: Energy auditing approach (2015) J. Hydraul. Eng, 142 | |
dcterms.bibliographicCitation | Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F., Hydraulic Transients Caused by Air Expulsion during Rapid Filling of Undulating Pipelines (2016) Water, 8, p. 25 | |
dcterms.bibliographicCitation | Wang, L., Wang, F., Karney, B., Malekpour, A., Numerical Investigation of Rapid Filling in Bypass Pipelines (2017) J. Hydraul. Res, 55, pp. 647-656 | |
dcterms.bibliographicCitation | Chaudhry, M.H., (2014) Applied Hydraulic Transients, 3rd ed, , Springer: New York, NY, USA | |
dcterms.bibliographicCitation | Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M., CFD and 1D Simulation of Transient Flow Effect on Air Vessel (2018) Proceedings of the 13th International Conference on Pressure Surges, Bordeaux, France, 14-16 November 2018, , BHR Group: Bordeaux, France | |
dcterms.bibliographicCitation | Ramezani, L., Karney, B., Malekpour, A., The Challenge of Air Valves: A Selective Critical Literature Review (2016) J. Water Resour. Plan. Manag, 141 | |
dcterms.bibliographicCitation | Balacco, G., Apollonio, C., Piccinni, A.F., Experimental Analysis of Air Valve Behaviour During Hydraulic Transients (2015) J. Appl. Water Eng. Res, 3, pp. 3-11 | |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G., Numerical modelling of pipelines with air pockets and air valves (2016) Can. J. Civ. Eng, 43, pp. 1052-1061 | |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Melia, D., Transient Phenomena during the Emptying Process of a Single Pipe with Water-Air Interaction (2019) J. Hydraul. Res, 57, pp. 318-326 | |
dcterms.bibliographicCitation | Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and Numerical Analysis of aWater Emptying Pipeline Using Different Air Valves (2017) Water, 9, p. 98 | |
dcterms.bibliographicCitation | Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., A Parametric Sensitivity Analysis of Numerically Modelled Piston-Type Filling and Emptying of an Inclined Pipeline with an Air Valve (2018) Proceedings of the 13th International Conference on Pressure Surges, Bordeaux, France, 14-16 November 2018, , BHR Group: Bordeaux, France | |
dcterms.bibliographicCitation | (2001) Manual of Water Supply Practices-M51: Air-Release, Air-Vacuum, and Combination Air Valves, 1st ed, , American Water Works Association: Denver, CO, USA | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.3390/w11091814 | |
dc.subject.keywords | Air valve | |
dc.subject.keywords | Air-water interface | |
dc.subject.keywords | Filling | |
dc.subject.keywords | Flow | |
dc.subject.keywords | Pipelines | |
dc.subject.keywords | Transient | |
dc.subject.keywords | Air | |
dc.subject.keywords | Equations of state | |
dc.subject.keywords | Filling | |
dc.subject.keywords | Pipelines | |
dc.subject.keywords | Transients | |
dc.subject.keywords | Air valves | |
dc.subject.keywords | Air water interfaces | |
dc.subject.keywords | Filling process | |
dc.subject.keywords | Flow | |
dc.subject.keywords | Numerical and experimental analysis | |
dc.subject.keywords | Pipeline failures | |
dc.subject.keywords | Pressure surges | |
dc.subject.keywords | Thermodynamic variables | |
dc.subject.keywords | Phase interfaces | |
dc.subject.keywords | Accuracy assessment | |
dc.subject.keywords | Air-water interaction | |
dc.subject.keywords | Equipment | |
dc.subject.keywords | Experimental study | |
dc.subject.keywords | Model validation | |
dc.subject.keywords | Numerical method | |
dc.subject.keywords | Numerical model | |
dc.subject.keywords | Operations technology | |
dc.subject.keywords | Oscillation | |
dc.subject.keywords | Pipeline | |
dc.subject.keywords | Simulation | |
dc.subject.keywords | Thermodynamics | |
dc.subject.keywords | Transient flow | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | This work is supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal (grant number PD/BD/114459/2016). | |
dc.type.spa | Artículo | |
dc.identifier.orcid | 57193337460 | |
dc.identifier.orcid | 57205420202 | |
dc.identifier.orcid | 56074282700 | |
dc.identifier.orcid | 35568240000 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.