Show simple item record

An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach

dc.creatorMontoya O.D.
dc.creatorGil-González W.
dc.creatorGrisales-Noreña L.F.
dc.date.accessioned2020-03-26T16:41:26Z
dc.date.available2020-03-26T16:41:26Z
dc.date.issued2019
dc.identifier.citationMontoya O.D., Gil-González W. y Grisales-Noreña L.F. (2019) An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Engineering Journal
dc.identifier.issn20904479
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9246
dc.description.abstractThis paper addresses the classical problem of optimal location and sizing of distributed generators (DGs) in radial distribution networks by presenting a mixed-integer nonlinear programming (MINLP) model. To solve such model, we employ the General Algebraic Modeling System (GAMS) in conjunction with the BONMIN solver, presenting its characteristics in a tutorial style. To operate all the DGs, we assume they are dispatched with a unity power factor. Test systems with 33 and 69 buses are employed to validate the proposed solution methodology by comparing its results with multiple approaches previously reported in the specialized literature. A 27-node test system is also used for locating photovoltaic (PV) sources considering the power capacity of the Caribbean region in Colombia during a typical sunny day. Numerical results confirm the efficiency and accuracy of the MINLP model and its solution is validated through the GAMS package. © 2019 Ain Shams Universityeng
dc.description.sponsorshipUniversidad Nacional de Colombia, UN: 38945, 58838 P17211 Universidad Tecnológica de Pereira, UTP: C2019P011, C2018P020 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS: 727-2015
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAin Shams University
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075329994&doi=10.1016%2fj.asej.2019.08.011&partnerID=40&md5=0e325b37e9d79a3278dfb68aab7bf338
dc.sourceScopus2-s2.0-85075329994
dc.titleAn exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach
dcterms.bibliographicCitationPrakash, P., Khatod, D.K., Optimal sizing and siting techniques for distributed generation in distribution systems: a review (2016) Renew Sustain Energy Rev, 57, pp. 111-130
dcterms.bibliographicCitationBawan, E.K., (2000), 3. , Distributed generation impact on power system case study: losses and voltage profile. In: Power engineering society summer meeting IEEE,
dcterms.bibliographicCitation2000. p. 1645–56
dcterms.bibliographicCitationRezaee Jordehi, A., Allocation of distributed generation units in electric power systems: a review (2016) Renew Sustain Energy Rev, 56, pp. 893-905
dcterms.bibliographicCitationAbdelaziz, A., Ali, E., Elazim, S.A., Optimal sizing and locations of capacitors in radial distribution systems via flower pollination optimization algorithm and power loss index (2016) Eng Sci Technol, Int J, 19 (1), pp. 610-618
dcterms.bibliographicCitationIqbal, F., Khan, M.T., Siddiqui, A.S., https://doi.org/10.1016/j.aej.2017.03.002, Optimal placement of DG and DSTATCOM for loss reduction and voltage profile improvement. Alexandr Eng J
dcterms.bibliographicCitationMahdad, B., Srairi, K., Adaptive differential search algorithm for optimal location of distributed generation in the presence of SVC for power loss reduction in distribution system (2016) Eng Sci Technol, Int J, 19 (3), pp. 1266-1282
dcterms.bibliographicCitationGaliveeti, H.R., Goswami, A.K., Choudhury, N.B.D., Impact of plug-in electric vehicles and distributed generation on reliability of distribution systems (2018) Eng Sci Technol, Int J, 21 (1), pp. 50-59
dcterms.bibliographicCitationElmitwally, A., A new algorithm for allocating multiple distributed generation units based on load centroid concept (2013) Alexandr Eng J, 52 (4), pp. 655-663
dcterms.bibliographicCitationSadiq, A., Adamu, S., Buhari, M., https://doi.org/10.1016/j.jestch.2018.09.013, Optimal distributed generation planning in distribution networks: a comparison of transmission network models with FACTS. Eng Sci Technol, Int J
dcterms.bibliographicCitationGrisales Noreña, L.F., Restrepo Cuestas, B.J., Jaramillo Ramirez, F.E., Location and sizing of distribted generation: a review (2017) Ciencia e Ingeniería Neogranadina, 27 (2), pp. 157-176
dcterms.bibliographicCitationKeane, A., Ochoa, L.F., Borges, C.L.T., Ault, G.W., Alarcon-Rodriguez, A.D., Currie, R.A.F., State-of-the-art techniques and challenges ahead for distributed generation planning and optimization (2013) IEEE Trans Power Syst, 28 (2), pp. 1493-1502
dcterms.bibliographicCitationTheo, W.L., Lim, J.S., Ho, W.S., Hashim, H., Lee, C.T., Review of distributed generation (DG) system planning and optimisation techniques: comparison of numerical and mathematical modelling methods (2017) Renew Sustain Energy Rev, 67, pp. 531-573
dcterms.bibliographicCitationPesaran, M., A, H., Huy, P.D., Ramachandaramurthy, V.K., A review of the optimal allocation of distributed generation: objectives, constraints, methods, and algorithms (2017) Renew Sustain Energy Rev, 75 (October), pp. 293-312
dcterms.bibliographicCitationDixit, M., Kundu, P., Jariwala, H.R., Incorporation of distributed generation and shunt capacitor in radial distribution system for techno-economic benefits (2017) Eng Sci Technol, Int J, 20 (2), pp. 482-493
dcterms.bibliographicCitationEllabban, O., Abu-Rub, H., Blaabjerg, F., Renewable energy resources: current status, future prospects and their enabling technology (2014) Renew Sustain Energy Rev, 39, pp. 748-764
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationKaur, S., Kumbhar, G., Sharma, J., A MINLP technique for optimal placement of multiple DG units in distribution systems (2014) Int J Electr Power Energy Syst, 63, pp. 609-617
dcterms.bibliographicCitationAbido, M.A., Optimal power flow using tabu search algorithm (2002) Electr Power Comp Syst, 30 (5), pp. 469-483
dcterms.bibliographicCitationHassanzadehFard, H., Jalilian, A., A novel objective function for optimal DG allocation in distribution systems using meta-heuristic algorithms (2016) Int J Green Energy, 13 (15), pp. 1615-1625
dcterms.bibliographicCitationBohre, A.K., Agnihotri, G., Dubey, M., Optimal sizing and sitting of DG with load models using soft computing techniques in practical distribution system (2016) IET Gener Transm Distrib, 10 (11), pp. 2606-2621
dcterms.bibliographicCitationMoradi, M., Abedini, M., A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems (2012) Int J Electr Power Energy Syst, 34 (1), pp. 66-74
dcterms.bibliographicCitationhttps://doi.org/10.1016/j.jesit.2017.06.001, D.P.R.P., V.R.V.C., G.M.T., Ant Lion optimization algorithm for optimal sizing of renewable energy resources for loss reduction in distribution systems. J Electr Syst Inf Technol 2018
dcterms.bibliographicCitation5(3): 663–80
dcterms.bibliographicCitationGandomkar, M., Vakilian, M., Ehsan, M., A genetic based tabu search algorithm for optimal dg allocation in distribution networks (2005) Electr Power Comp Syst, 33 (12), pp. 1351-1362
dcterms.bibliographicCitationInjeti, S.K., Kumar, N.P., A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems (2013) Int J Electr Power Energy Syst, 45 (1), pp. 142-151
dcterms.bibliographicCitationSultana, S., Roy, P.K., Krill herd algorithm for optimal location of distributed generator in radial distribution system (2016) Appl Soft Comput, 40, pp. 391-404
dcterms.bibliographicCitationSultana, S., Roy, P.K., Oppositional krill herd algorithm for optimal location of distributed generator in radial distribution system (2015) Int J Electr Power Energy Syst, 73, pp. 182-191
dcterms.bibliographicCitationChithraDevi, S., Lakshminarasimman, L., Balamurugan, R., Stud Krill herd Algorithm for multiple DG placement and sizing in a radial distribution system (2017) Eng Sci Technol, Int J, 20 (2), pp. 748-759
dcterms.bibliographicCitationGrisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO Techniques (2018) Energies, 11 (1018), pp. 1-27
dcterms.bibliographicCitationMohanty, B., Tripathy, S., A teaching learning based optimization technique for optimal location and size of DG in distribution network (2016) J Electr Syst Inf Technol, 3 (1), pp. 33-44
dcterms.bibliographicCitationSudabattula, S.K., M, K., Optimal allocation of solar based distributed generators in distribution system using Bat algorithm (2016) Perspect Sci, 8, pp. 270-272. , recent Trends in Engineering and Material Sciences
dcterms.bibliographicCitationYammani, C., Maheswarapu, S., Matam, S.K., A Multi-objective Shuffled Bat algorithm for optimal placement and sizing of multi distributed generations with different load models (2016) Int J Electr Power Energy Syst, 79, pp. 120-131
dcterms.bibliographicCitationOthman, M., El-Khattam, W., Hegazy, Y., Abdelaziz, A.Y., Optimal placement and sizing of voltage controlled distributed generators in unbalanced distribution networks using supervised firefly algorithm (2016) Int J Electr Power Energy Syst, 82, pp. 105-113
dcterms.bibliographicCitationBehera, S.R., Dash, S.P., Panigrahi, B.K., Optimal placement and sizing of DGs in radial distribution system (RDS) using Bat algorithm (2015) 2015 International conference on circuits, power and computing technologies [ICCPCT-2015], pp. 1-8
dcterms.bibliographicCitationNguyen, T.P., Dieu, V.N., Vasant, P., Symbiotic organism search algorithm for optimal size and siting of distributed generators in distribution systems (2017) Int J Energy Optim Eng, 6 (3), pp. 1-28
dcterms.bibliographicCitationNekooei, K., Farsangi, M.M., Nezamabadi-Pour, H., Lee, K.Y., An improved multi-objective harmony search for optimal placement of DGs in distribution systems (2013) IEEE Trans Smart Grid, 4 (1), pp. 557-567
dcterms.bibliographicCitationhttps://doi.org/10.1016/j.future.2018.12.046, S.C., A.T., Optimal power flow using Moth Swarm Algorithm with Gravitational Search Algorithm considering wind power. Future Gener Comput Syst
dcterms.bibliographicCitationNojavan, S., Jalali, M., Zare, K., An MINLP approach for optimal dg unit's allocation in radial/mesh distribution systems take into account voltage stability index (2015) Trans Electr Eng, 39 (E2), pp. 155-165
dcterms.bibliographicCitationEngelmann, A., Muhlpfordt, T., Jiang, Y., Houska, B., Faulwasser, T., https://doi.org/10.1016/j.ifacol.2017.08.1095, Distributed AC optimal power flow using ALADIN, IFAC-PapersOnLine 2017
dcterms.bibliographicCitation50(1):5536–41. In: 20th IFAC World Congress
dcterms.bibliographicCitationMontoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Latin Am Trans, 15 (5), pp. 890-900
dcterms.bibliographicCitationhttps://www.gams.com/download/, GAMS Development Corp., General Algebraic Modeling System
dcterms.bibliographicCitationCastillo, E., Conejo, A., Pedregal, P., García, R., Alguacil, N., Building and solving mathematical programming models in engineering and science, pure and applied mathematics: A Wiley Series of Texts, Monographs and Tracts (2001), Wiley
dcterms.bibliographicCitationMontoya, O.D., Garces, A., Castro, C.A., Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation (2018) IEEE Latin Am Trans, 16 (8), pp. 2213-2220
dcterms.bibliographicCitationMontoya, O.D., Solving a classical optimization problem using GAMS optimizer package: economic dispatch problem implementation (2017) Ingenieria y ciencia, 13 (26), pp. 39-63
dcterms.bibliographicCitationJamian, J., Mustafa, M., Mokhlis, H., Optimal multiple distributed generation output through rank evolutionary particle swarm optimization (2015) Neurocomputing, 152, pp. 190-198
dcterms.bibliographicCitationKollu, R., Rayapudi, S.R., Sadhu, V.L.N., A novel method for optimal placement of distributed generation in distribution systems using HSDO (2014) Int Trans Electr Energy Syst, 24 (4), pp. 547-561
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.doi10.1016/j.asej.2019.08.011
dc.subject.keywordsDistributed generation
dc.subject.keywordsDistribution systems
dc.subject.keywordsGeneral algebraic modeling system
dc.subject.keywordsMixed-integer nonlinear programming
dc.subject.keywordsOptimal location and sizing of distributed generation
dc.subject.keywordsAlgebra
dc.subject.keywordsDistributed power generation
dc.subject.keywordsInteger programming
dc.subject.keywordsLocation
dc.subject.keywordsAlgebraic modeling
dc.subject.keywordsDistributed generator (DGs)
dc.subject.keywordsDistribution systems
dc.subject.keywordsMixed integer nonlinear programming models
dc.subject.keywordsMixed-integer nonlinear programming
dc.subject.keywordsOptimal locations
dc.subject.keywordsRadial distribution networks
dc.subject.keywordsSolution methodology
dc.subject.keywordsNonlinear programming
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was funded in part by the Administrative Department of Science, Technology, and Innovation of Colombia (COLCIENCIAS) through its National Scholarship Program, under Grant 727-2015 ; in part by Instituto Tecnológico Metropolitano de Medellín, under Project P17211; in part by Universidad Tecnológica de Bolívar, under Projects C2018P020 and C2019P011; and in part by Universidad Nacional de Colombia, under Proyect ”Estrategia de transformación del sector energético Colombiano en el horizonte de 2030 - Energética 2030” - ”Generación distribuida de energía eléctrica en Colombia a partir de energía solar y eólica” (Code: 58838, Hermes: 38945). Oscar D. Montoya received his BEE, M.Sc. and Ph.D degrees in Electrical Engineering from Universidad Tecnológica de Pereira, Colombia, in 2012 and 2014 respectively. His research interests include mathematical optimization, planning and control of power systems, renewable energies, energy storage, protective devices and smartgrids. Walter Gil-González received his BEE and M.Sc. degrees in Electrical Engineering from Universidad Tecnológica de Pereira, Colombia, in 2011 and 2013 respectively. He is currently studying a Ph.D in Electrical Engineering at Universidad Tecnológica de Pereira, Colombia. His research interests include mathematical optimization, planning and control of power systems, renewable energies, energy storage, protective devices and smartgrids. Luis F. Grisales received his BEE and M.Sc. degrees in Electrical Engineering from Universidad Tecnológica de Pereira, Colombia, in 2013 and 2015 respectively. He is currently studying a Ph.D in Engineering at Universidad Nacional de Colombia. Actually, is professor in the Instituto TecnolÓgico Metropolitano de Medellín, attached to the Department of Electromechanics and mechatronics, member of the research group MATyER. His research interests include mathematical modelling, optimization techniques, planning and control of power systems, renewable energies, energy storage, power electronic and smartgrids.
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid55791991200


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/