Show simple item record

Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting

dc.creatorPineda J.
dc.creatorVargas R.
dc.creatorRomero L.A.
dc.creatorMarrugo J.
dc.creatorMeneses J.
dc.creatorMarrugo A.G.
dc.date.accessioned2020-03-26T16:41:25Z
dc.date.available2020-03-26T16:41:25Z
dc.date.issued2019
dc.identifier.citationPineda J., Vargas R., Romero L.A., Marrugo J., Meneses J. y Marrugo A.G. (2019) Robust automated reading of the skin prick test via 3D imaging and parametric surface fitting. PLoS ONE; Vol. 14, Núm. 10
dc.identifier.issn19326203
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9240
dc.description.abstractThe conventional reading of the skin prick test (SPT) for diagnosing allergies is prone to inter- and intra-observer variations. Drawing the contours of the skin wheals from the SPT and scanning them for computer processing is cumbersome. However, 3D scanning technology promises the best results in terms of accuracy, fast acquisition, and processing. In this work, we present a wide-field 3D imaging system for the 3D reconstruction of the SPT, and we propose an automated method for the measurement of the skin wheals. The automated measurement is based on pyramidal decomposition and parametric 3D surface fitting for estimating the sizes of the wheals directly. We proposed two parametric models for the diameter estimation. Model 1 is based on an inverted Elliptical Paraboloid function, and model 2 on a super-Gaussian function. The accuracy of the 3D imaging system was evaluated with validation objects obtaining transversal and depth accuracies within ± 0.1 mm and ± 0.01 mm, respectively. We tested the method on 80 SPTs conducted in volunteer subjects, which resulted in 61 detected wheals. We analyzed the accuracy of the models against manual reference measurements from a physician and obtained that the parametric model 2 on average yields diameters closer to the reference measurements (model 1: -0.398 mm vs. model 2: -0.339 mm) with narrower 95% limits of agreement (model 1: [-1.58, 0.78] mm vs. model 2: [-1.39, 0.71] mm) in a Bland-Altman analysis. In one subject, we tested the reproducibility of the method by registering the forearm under five different poses obtaining a maximum coefficient of variation of 5.24% in the estimated wheal diameters. The proposed method delivers accurate and reproducible measurements of the SPT. © 2019 Pineda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS: 538871552485 C2018P018, C2018P005
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherPublic Library of Science
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073657466&doi=10.1371%2fjournal.pone.0223623&partnerID=40&md5=ccacdcda607a2c484a1f971f08da2268
dc.sourceScopus2-s2.0-85073657466
dc.titleRobust automated reading of the skin prick test via 3D imaging and parametric surface fitting
dcterms.bibliographicCitationBuyuktiryaki, B., Sahiner, U.M., Karabulut, E., Cavkaytar, O., Tuncer, A., Sekerel, B.E., Optimizing the use of a skin prick test device on children (2013) International Archives of Allergy and Immunology, 162 (1), pp. 65-70. , https://doi.org/10.1159/000350788, PMID: 23816800
dcterms.bibliographicCitationVenter, C., Arshad, S.H., Epidemiology of food allergy (2011) Pediatric Clinics of North America, 58 (2), pp. 327-349. , https://doi.org/10.1016/j.pcl.2011.02.011, PMID: 21453805
dcterms.bibliographicCitationMarrugo, J., Hernández, L., Villalba, V., Prevalence of self-reported food allergy in Cartagena (Colombia) population (2008) Allergologia Et Immunopathologia, 36 (6), pp. 320-324. , https://doi.org/10.1016/S0301-0546(08)75863-4, PMID: 19150030
dcterms.bibliographicCitationTang, M.L.K., Mullins, R.J., Food allergy: Is prevalence increasing? (2017) Internal Medicine Journal, 47 (3), pp. 256-261. , https://doi.org/10.1111/imj.13362, PMID: 28260260
dcterms.bibliographicCitationAndersen, H.H., Lundgaard, A.C., Petersen, A.S., Hauberg, L.E., Sharma, N., Hansen, S.D., The lancet weight determines wheal diameter in response to skin prick testing with histamine (2016) PLoS ONE, 11 (5). , https://doi.org/10.1371/journal.pone.0156211, PMID: 27213613
dcterms.bibliographicCitationPijnenborg, H., Nilsson, L., Dreborg, S., Estimation of skin prick test reactions with a scanning program (1996) Allergy, 51 (11), pp. 782-788. , PMID: 8947335
dcterms.bibliographicCitationValk, J.P.M., Van Wijk, R.G., Hoorn, E., Groenendijk, L., Groenendijk, I.M., Jong, N.W., Measurement and interpretation of skin prick test results (2016) Clinical and Translational Allergy, pp. 1-5
dcterms.bibliographicCitationWöhrl, S., Vigl, K., Binder, M., Stingl, G., Prinz, M., Automated measurement of skin prick tests: An advance towards exact calculation of wheal size (2006) Experimental Dermatology, 15 (2), pp. 119-124. , https://doi.org/10.1111/j.1600-0625.2006.00388.x, PMID: 16433683
dcterms.bibliographicCitationKonstantinou, G.N., Bousquet, P.J., Zuberbier, T., Papadopoulos, N.G., The longest wheal diameter is the optimal measurement for the evaluation of skin prick tests (2010) International Archives of Allergy and Immunology, 151 (4), pp. 343-345. , https://doi.org/10.1159/000250443, PMID: 19851076
dcterms.bibliographicCitationPrinz, M., Vigl, K., Wöhrl, S., Automatic measurement of skin wheals provoked by skin prick tests (2005) Studies in Health Technology and Informatics, 116, pp. 441-446. , PMID: 16160297
dcterms.bibliographicCitationHeinzerling, L., Mari, A., Bergmann, K.C., Bresciani, M., Burbach, G., Darsow, U., The skin prick test—European standards (2013) Clinical and Translational Allergy, 3 (1), p. 3. , https://doi.org/10.1186/2045-7022-3-3, PMID: 23369181
dcterms.bibliographicCitationMcCann, W.A., Ownby, D.R., The reproducibility of the allergy skin test scoring and interpretation by board-certified/board-eligible allergists (2002) Annals of Allergy, Asthma and Immunology, 89 (4), pp. 368-371. , https://doi.org/10.1016/S1081-1206(10)62037-6, PMID: 12392380
dcterms.bibliographicCitationBulan, O., Improved wheal detection from skin prick test images (2014) IS&T/SPIE Electronic Imaging, p. 90240J. , Niel KS, Bingham PR, editors. SPIE
dcterms.bibliographicCitationHuttunen, H., Ryynänen, J.P., Forsvik, H., Voipio, V., Kikuchi, H., Kernel Fisher discriminant and elliptic shape model for automatic measurement of allergic reactions (2011) Lecture Notes in Computer Science, pp. 764-773. , Berlin, Heidelberg: Springer Berlin Heidelberg
dcterms.bibliographicCitationJusto, X., Díaz, I., Gil, J.J., Gastaminza, G., Prick test: Evolution towards automated reading (2016) Allergy, 71 (8), pp. 1095-1102. , https://doi.org/10.1111/all.12921, PMID: 27100940
dcterms.bibliographicCitationHaleem, A., Javaid, M., 3D scanning applications in medical field: A literature-based review (2019) Clinical Epidemiology and Global Health, 7 (2), pp. 199-210. , https://doi.org/10.1016/j.cegh.2018.05.006
dcterms.bibliographicCitationLaloš, J., Mrak, M., Pavlovčič, U., Jezeršek, M., Handheld optical system for skin topography measurement using Fourier transform profilometry (2015) Strojniški Vestnik—Journal of Mechanical Engineering, 61 (5), pp. 285-291
dcterms.bibliographicCitationRey-Barroso, L., Burgos-Fernández, F.J., Ares, M., Royo, S., Puig, S., Malvehy, J., Morphological study of skin cancer lesions through a 3D scanner based on fringe projection and machine learning (2019) Biomedical Optics Express, 10 (7), p. 3404. , https://doi.org/10.1364/BOE.10.003404, PMID: 31467785
dcterms.bibliographicCitationJusto, X., Díaz, I., Gil, J.J., Gastaminza, G., Medical device for automated prick test reading (2018) IEEE Journal of Biomedical and Health Informatics, 22 (3), pp. 895-903. , https://doi.org/10.1109/JBHI.2017.2680840, PMID: 28362597
dcterms.bibliographicCitationDos Santos, R.V., Mlynek, A., Lima, H.C., Martus, P., Maurer, M., Beyond flat weals: Validation of a three-dimensional imaging technology that will improve skin allergy research (2008) Clinical and Experimental Dermatology, 33 (6), pp. 772-775. , https://doi.org/10.1111/j.1365-2230.2008.02897.x, PMID: 18681868
dcterms.bibliographicCitationVerdaasdonk, R.M., Ploeger, J., Den Blanken, M., Liberton, N., Rustemeyer, T., Wolff, J., The use of 3D scanners for skin prick allergy testing: A feasibility study (Conference Presentation) (2018) Photonics in Dermatology and Plastic Surgery 2018, p. 104670B. , 10467 International Society for Optics and Photonics
dcterms.bibliographicCitationRoques, C., Téot, L., Frasson, N., Meaume, S., PrimoS: An optical system that produces three-dimensional measurements of skin surfaces (2003) Journal of Wound Care, 12 (9), pp. 362-364. , https://doi.org/10.12968/jowc.2003.12.9.26539, PMID: 14601231
dcterms.bibliographicCitationRosén, B.G., Blunt, L., Thomas, T.R., On in-vivoskin topography metrology and replication techniques (2005) Journal of Physics: Conference Series, 13, pp. 325-329
dcterms.bibliographicCitationMarrugo, A.G., Romero, L.A., Meneses, J., Wide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry (2019) Dimensional Optical Metrology and Inspection for Practical Applications VIII, p. 1099102. , SPIE
dcterms.bibliographicCitationLang, P., Radermacher, K., Steines, D., (2016) Kinematic and Parameterized Modeling for Patient-Adapted Implants, Tools, and Surgical Procedures, , inventors
dcterms.bibliographicCitationUS Patent App
dcterms.bibliographicCitationMarrugo, A.G., Romero, L.A., Meneses, J.E., Marrugo, J., (2018) Dispositivo Y Método De Reconstrucción 3D para La Medición De Pápulas En La Piel, , inventors
dcterms.bibliographicCitationassignee. Colombian invention patent App
dcterms.bibliographicCitationTakeda, M., Ina, H., Kobayashi, S., Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry (1982) Journal of the Optical Society of America, 72 (1), pp. 156-160. , https://doi.org/10.1364/JOSA.72.000156
dcterms.bibliographicCitationLi, B., An, Y., Zhang, S., Single-shot absolute 3D shape measurement with Fourier transform profilometry (2016) Applied Optics, 55 (19), p. 5219. , https://doi.org/10.1364/AO.55.005219, PMID: 27409213
dcterms.bibliographicCitationVargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: A comparative study (2018) Opt Pura Apl, 51 (3), p. 50305. , https://doi.org/10.7149/OPA.51.3.50305, 1–10
dcterms.bibliographicCitationJolliffe, I.T., Cadima, J., Principal component analysis: A review and recent developments (2016) Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2065), p. 20150202. , https://doi.org/10.1098/rsta.2015.0202
dcterms.bibliographicCitationBurt, P., Adelson, E., The Laplacian pyramid as a compact image code (1983) IEEE Transactions on Communications, 31 (4), pp. 532-540. , https://doi.org/10.1109/TCOM.1983.1095851
dcterms.bibliographicCitationParis, S., Hasinoff, S.W., Kautz, J., Local Laplacian filters: Edge-aware image processing with a Laplacian pyramid (2011) ACM Trans Graph, 30 (4), pp. 68-71. , https://doi.org/10.1145/2010324.1964963
dcterms.bibliographicCitationShao, L., Zhen, X., Tao, D., Li, X., Spatio-temporal Laplacian pyramid coding for action recognition (2014) IEEE Transactions on Cybernetics, 44 (6), pp. 817-827. , https://doi.org/10.1109/TCYB.2013.2273174, PMID: 23912503
dcterms.bibliographicCitationForsyth, D.A., Ponce, J., (2012) Computer Vision: A Modern Approach, , Prentice-Hall
dcterms.bibliographicCitationRedmon, J., Farhadi, A., YOLO9000: Better, faster, stronger (2017) Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263-7271
dcterms.bibliographicCitationLi, Y., Light beams with flat-topped profiles (2002) Optics Letters, 27 (12), pp. 1007-1009. , https://doi.org/10.1364/ol.27.001007, PMID: 18026347
dcterms.bibliographicCitationQuellec, G., Lamard, M., Josselin, P.M., Cazuguel, G., Cochener, B., Roux, C., Optimal wavelet transform for the detection of microaneurysms in retina photographs (2008) IEEE Transactions on Medical Imaging, 27 (9), pp. 1230-1241. , https://doi.org/10.1109/TMI.2008.920619, PMID: 18779064
dcterms.bibliographicCitationBeirle, S., Lampel, J., Lerot, C., Sihler, H., Wagner, T., Parameterizing the instrumental spectral response function and its changes by a super-Gaussian and its derivatives (2017) Atmospheric Measurement Techniques, 10 (2), pp. 581-598. , https://doi.org/10.5194/amt-10-581-2017
dcterms.bibliographicCitationColeman, T.F., Li, Y., An interior trust region approach for nonlinear minimization subject to bounds (1996) SIAM Journal on Optimization, 6 (2), pp. 418-445. , https://doi.org/10.1137/0806023
dcterms.bibliographicCitationGiavarina, D., Understanding Bland Altman analysis (2015) Biochemia Medica, 25 (2), pp. 141-151. , https://doi.org/10.11613/BM.2015.015, PMID: 26110027
dcterms.bibliographicCitationAltman, D.G., Bland, J.M., Measurement in medicine: The analysis of method comparison studies (1983) Journal of the Royal Statistical Society: Series D (The Statistician), 32 (3), pp. 307-317
dcterms.bibliographicCitationKrouwer, J.S., Setting performance goals and evaluating total analytical error for diagnostic assays (2002) Clinical Chemistry, 48 (6), pp. 919-927. , PMID: 12029009
dcterms.bibliographicCitationBernstein, I.L., Li, J.T., Bernstein, D.I., Hamilton, R., Spector, S.L., Tan, R., Allergy diagnostic testing: An updated practice parameter (2008) Annals of Allergy, Asthma & Immunology, 100 (3), pp. S1-S148
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1371/journal.pone.0223623
dc.subject.keywordsAllergen
dc.subject.keywordsAdult
dc.subject.keywordsAllergic reaction
dc.subject.keywordsArticle
dc.subject.keywordsAutoanalysis
dc.subject.keywordsBlomia tropicalis
dc.subject.keywordsControlled study
dc.subject.keywordsDander
dc.subject.keywordsDermatophagoides farinae
dc.subject.keywordsDermatophagoides pteronyssinus
dc.subject.keywordsDiagnostic accuracy
dc.subject.keywordsDiagnostic test accuracy study
dc.subject.keywordsFemale
dc.subject.keywordsHuman
dc.subject.keywordsImage reconstruction
dc.subject.keywordsMale
dc.subject.keywordsPeriplaneta americana
dc.subject.keywordsPrick test
dc.subject.keywordsReproducibility
dc.subject.keywordsSkin manifestation
dc.subject.keywordsThree dimensional imaging
dc.subject.keywordsMulti-TestRPC
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis study was supported by Colciencias (www.colciencias.gov.co, Grant 538871552485) and by Universidad Tecnol?gica de Bolivar (www.utb.edu.co, Grants C2018P005 and C2018P018), Colombia.
dc.type.spaArtículo
dc.identifier.orcid57192270016
dc.identifier.orcid57117284600
dc.identifier.orcid36142156300
dc.identifier.orcid6507678324
dc.identifier.orcid7004348301
dc.identifier.orcid24329839300


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/