Mostrar el registro sencillo del ítem

dc.contributor.editorPerez-Taborda J.A.
dc.contributor.editorAvila Bernal A.G.
dc.creatorPineda J.
dc.creatorMarrugo A.G.
dc.creatorRomero L.A.
dc.date.accessioned2020-03-26T16:41:24Z
dc.date.available2020-03-26T16:41:24Z
dc.date.issued2019
dc.identifier.citationPineda J., Marrugo A.G. y Romero L.A. (2019) Developing a Robust Acquisition System for Fringe Projection Profilometry. Journal of Physics: Conference Series; Vol. 1247, Núm. 1
dc.identifier.issn17426588
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9236
dc.description.abstractSince Fringe Projection Profilometry (FPP) is an intensity-based coding strategy, it is prone to improper optical setup arrangement, surface texture and reflectance, uneven illumination distribution, among others. These conditions introduce errors in phase retrieval which lead to an inaccurate 3-D reconstruction. In this paper, we describe a dynamic approach toward a robust FPP acquisition in challenging scenes and objects. Our aim is to acquire the best possible fringe pattern image by adjusting the object closer to an ideal system-object setup. We describe the software implementation of our method and the interface design using LabVIEW. Experimental results demonstrate that the proposed method greatly reduces sources of error in 3-D reconstruction. © Published under licence by IOP Publishing Ltd.eng
dc.description.sponsorshipUniversidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 538871552485 Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Physics Publishing
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073892760&doi=10.1088%2f1742-6596%2f1247%2f1%2f012053&partnerID=40&md5=bc87d6bdda8e694f13b7f80db33e9b8b
dc.sourceScopus2-s2.0-85073892760
dc.titleDeveloping a Robust Acquisition System for Fringe Projection Profilometry
dcterms.bibliographicCitationSheng, H., Xu, J., Zhang, S., Dynamic projection theory for fringe projection profilometry (2017) Applied Optics, 56 (30), pp. 8452-8460
dcterms.bibliographicCitationPeng, T., Gupta, S.K., Model and algorithms for point cloud construction using digital projection patterns (2007) Journal of Computing and Information Science in Engineering, 7 (4), pp. 372-381
dcterms.bibliographicCitationPeng, T., Gupta, S.K., Algorithms for generating adaptive projection patterns for 3D shape measurement (2008) Journal of Computing and Information Science in Engineering, 8 (3)
dcterms.bibliographicCitationZhang, C., Xu, J., Xi, N., Zhao, J., Shi, Q., A robust surface coding method for optically challenging objects using structured light (2014) IEEE Transactions on Automation Science and Engineering, 11 (3), pp. 775-788
dcterms.bibliographicCitationLi, S., Da, F., Rao, L., Adaptive fringe projection technique for high-dynamic range three-dimensional shape measurement using binary search (2017) Optical Engineering, 56 (9)
dcterms.bibliographicCitationZhang, S., Yau, S.T., High dynamic range scanning technique (2009) Optical Engineering, 48 (3)
dcterms.bibliographicCitationVargas, R., Pineda, J., Marrugo, A.G., Romero, L.A., Background intensity removal in structured light three-dimensional reconstruction (2016) Signal Processing, Images and Artificial Vision (STSIVA), 2016 XXI Symposium on, pp. 1-6. , IEEE
dcterms.bibliographicCitationLuo, F., Chen, W., Su, X., Eliminating zero spectra in Fourier transform profilometry by application of Hilbert transform (2016) Optics Communications, 365, pp. 76-85
dcterms.bibliographicCitationBone, D.J., Fourier fringe analysis: The two-dimensional phase unwrapping problem (1991) Applied Optics, 30 (25), pp. 3627-3632
dcterms.bibliographicCitationStavroulakis, P., Sims-Waterhouse, D., Piano, S., Leach, R., Flexible decoupled camera and projector fringe projection system using inertial sensors (2017) Optical Engineering, 56 (10)
dcterms.bibliographicCitationPritt, M.D., Ghiglia, D.C., (1998) Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software, , (Wiley)
dcterms.bibliographicCitationPineda, J., Vargas, R., Romero, L.A., Meneses, J., Marrugo, A.G., Fringe Quality Map for Fringe Projection Profilometry in LabVIEW (2018) Opt Pura Apl, 51 (4), p. 1. , 50302 1-8
dcterms.bibliographicCitationWang, X., Fang, S., Zhu, X., Li, Y., Phase unwrapping of interferometric fringes based on a mutual information quality map and phase recovery strategy (2018) Optical Engineering, 57, pp. 1-16
dcterms.bibliographicCitationTakeda, M., Mutoh, K., Fourier transform profilometry for the automatic measurement of 3-D object shapes (1983) Applied Optics, 22 (24), pp. 3977-3982
dcterms.bibliographicCitationMarrugo, A.G., Pineda, J., Romero, L.A., Vargas, R., Meneses, J., (2018) Digital Systems, , ed Asadpour Vahid (IntechOpen) Fourier Transform Profilometry in LabVIEW
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event6th National Conference on Engineering Physics, CNIF 2018 and the 1st International Conference on Applied Physics Engineering and Innovation, APEI 2018
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1088/1742-6596/1247/1/012053
dc.subject.keywordsComputer programming languages
dc.subject.keywordsImage reconstruction
dc.subject.keywordsProfilometry
dc.subject.keywordsTextures
dc.subject.keywords3D reconstruction
dc.subject.keywordsDynamic approaches
dc.subject.keywordsFringe projection profilometry
dc.subject.keywordsInterface designs
dc.subject.keywordsRobust Acquisition
dc.subject.keywordsSoftware implementation
dc.subject.keywordsSurface textures
dc.subject.keywordsUneven illuminations
dc.subject.keywordsEngineering research
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work has been partly funded by Colciencias (Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas) project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. Authors thank Dirección de Investigaciones, Universidad Tecnológica de Bolívar for the support. J. Pineda thanks Universidad Tecnológica de Bolívar for a Masters degree scholarship.
dc.relation.conferencedate22 October 2018 through 26 October 2018
dc.type.spaConferencia
dc.identifier.orcid57192270016
dc.identifier.orcid24329839300
dc.identifier.orcid36142156300


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.