Mostrar el registro sencillo del ítem
Developing a Robust Acquisition System for Fringe Projection Profilometry
dc.contributor.editor | Perez-Taborda J.A. | |
dc.contributor.editor | Avila Bernal A.G. | |
dc.creator | Pineda J. | |
dc.creator | Marrugo A.G. | |
dc.creator | Romero L.A. | |
dc.date.accessioned | 2020-03-26T16:41:24Z | |
dc.date.available | 2020-03-26T16:41:24Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Pineda J., Marrugo A.G. y Romero L.A. (2019) Developing a Robust Acquisition System for Fringe Projection Profilometry. Journal of Physics: Conference Series; Vol. 1247, Núm. 1 | |
dc.identifier.issn | 17426588 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9236 | |
dc.description.abstract | Since Fringe Projection Profilometry (FPP) is an intensity-based coding strategy, it is prone to improper optical setup arrangement, surface texture and reflectance, uneven illumination distribution, among others. These conditions introduce errors in phase retrieval which lead to an inaccurate 3-D reconstruction. In this paper, we describe a dynamic approach toward a robust FPP acquisition in challenging scenes and objects. Our aim is to acquire the best possible fringe pattern image by adjusting the object closer to an ideal system-object setup. We describe the software implementation of our method and the interface design using LabVIEW. Experimental results demonstrate that the proposed method greatly reduces sources of error in 3-D reconstruction. © Published under licence by IOP Publishing Ltd. | eng |
dc.description.sponsorship | Universidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 538871552485 Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Institute of Physics Publishing | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073892760&doi=10.1088%2f1742-6596%2f1247%2f1%2f012053&partnerID=40&md5=bc87d6bdda8e694f13b7f80db33e9b8b | |
dc.source | Scopus2-s2.0-85073892760 | |
dc.title | Developing a Robust Acquisition System for Fringe Projection Profilometry | |
dcterms.bibliographicCitation | Sheng, H., Xu, J., Zhang, S., Dynamic projection theory for fringe projection profilometry (2017) Applied Optics, 56 (30), pp. 8452-8460 | |
dcterms.bibliographicCitation | Peng, T., Gupta, S.K., Model and algorithms for point cloud construction using digital projection patterns (2007) Journal of Computing and Information Science in Engineering, 7 (4), pp. 372-381 | |
dcterms.bibliographicCitation | Peng, T., Gupta, S.K., Algorithms for generating adaptive projection patterns for 3D shape measurement (2008) Journal of Computing and Information Science in Engineering, 8 (3) | |
dcterms.bibliographicCitation | Zhang, C., Xu, J., Xi, N., Zhao, J., Shi, Q., A robust surface coding method for optically challenging objects using structured light (2014) IEEE Transactions on Automation Science and Engineering, 11 (3), pp. 775-788 | |
dcterms.bibliographicCitation | Li, S., Da, F., Rao, L., Adaptive fringe projection technique for high-dynamic range three-dimensional shape measurement using binary search (2017) Optical Engineering, 56 (9) | |
dcterms.bibliographicCitation | Zhang, S., Yau, S.T., High dynamic range scanning technique (2009) Optical Engineering, 48 (3) | |
dcterms.bibliographicCitation | Vargas, R., Pineda, J., Marrugo, A.G., Romero, L.A., Background intensity removal in structured light three-dimensional reconstruction (2016) Signal Processing, Images and Artificial Vision (STSIVA), 2016 XXI Symposium on, pp. 1-6. , IEEE | |
dcterms.bibliographicCitation | Luo, F., Chen, W., Su, X., Eliminating zero spectra in Fourier transform profilometry by application of Hilbert transform (2016) Optics Communications, 365, pp. 76-85 | |
dcterms.bibliographicCitation | Bone, D.J., Fourier fringe analysis: The two-dimensional phase unwrapping problem (1991) Applied Optics, 30 (25), pp. 3627-3632 | |
dcterms.bibliographicCitation | Stavroulakis, P., Sims-Waterhouse, D., Piano, S., Leach, R., Flexible decoupled camera and projector fringe projection system using inertial sensors (2017) Optical Engineering, 56 (10) | |
dcterms.bibliographicCitation | Pritt, M.D., Ghiglia, D.C., (1998) Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software, , (Wiley) | |
dcterms.bibliographicCitation | Pineda, J., Vargas, R., Romero, L.A., Meneses, J., Marrugo, A.G., Fringe Quality Map for Fringe Projection Profilometry in LabVIEW (2018) Opt Pura Apl, 51 (4), p. 1. , 50302 1-8 | |
dcterms.bibliographicCitation | Wang, X., Fang, S., Zhu, X., Li, Y., Phase unwrapping of interferometric fringes based on a mutual information quality map and phase recovery strategy (2018) Optical Engineering, 57, pp. 1-16 | |
dcterms.bibliographicCitation | Takeda, M., Mutoh, K., Fourier transform profilometry for the automatic measurement of 3-D object shapes (1983) Applied Optics, 22 (24), pp. 3977-3982 | |
dcterms.bibliographicCitation | Marrugo, A.G., Pineda, J., Romero, L.A., Vargas, R., Meneses, J., (2018) Digital Systems, , ed Asadpour Vahid (IntechOpen) Fourier Transform Profilometry in LabVIEW | |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 6th National Conference on Engineering Physics, CNIF 2018 and the 1st International Conference on Applied Physics Engineering and Innovation, APEI 2018 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1088/1742-6596/1247/1/012053 | |
dc.subject.keywords | Computer programming languages | |
dc.subject.keywords | Image reconstruction | |
dc.subject.keywords | Profilometry | |
dc.subject.keywords | Textures | |
dc.subject.keywords | 3D reconstruction | |
dc.subject.keywords | Dynamic approaches | |
dc.subject.keywords | Fringe projection profilometry | |
dc.subject.keywords | Interface designs | |
dc.subject.keywords | Robust Acquisition | |
dc.subject.keywords | Software implementation | |
dc.subject.keywords | Surface textures | |
dc.subject.keywords | Uneven illuminations | |
dc.subject.keywords | Engineering research | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | This work has been partly funded by Colciencias (Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas) project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. Authors thank Dirección de Investigaciones, Universidad Tecnológica de Bolívar for the support. J. Pineda thanks Universidad Tecnológica de Bolívar for a Masters degree scholarship. | |
dc.relation.conferencedate | 22 October 2018 through 26 October 2018 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 57192270016 | |
dc.identifier.orcid | 24329839300 | |
dc.identifier.orcid | 36142156300 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.