Mostrar el registro sencillo del ítem

dc.contributor.editorSuarez E.G.
dc.contributor.editorDiaz B.Z.
dc.contributor.editorNino E.D.V.
dc.creatorMontoya O.D.
dc.creatorGil-González W.
dc.creatorHolguín M.
dc.date.accessioned2020-03-26T16:41:23Z
dc.date.available2020-03-26T16:41:23Z
dc.date.issued2019
dc.identifier.citationMontoya O.D., Gil-González W. y Holguín M. (2019) Optimal power flow studies in direct current grids: An application of the bio-inspired elephant swarm water search algorithm. Journal of Physics: Conference Series; Vol. 1403, Núm. 1
dc.identifier.issn17426588
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9230
dc.description.abstractColombian power system is experienced important changes due to the large scale integration of renewable power generation based on solar and wind power; added to the fact that direct current networks have taken important attention, since they are efficient in terms of power loss and voltage profile at distribution or transmission levels For addressing this problem, this paper presents the application of an emerging bio-inspired metaheuristic optimization technique known as elephant swarm water search algorithm to the optimal power flow problem in direct current networks. A master-slave hybrid optimization strategy for optimal power flow analysis is addressed in this paper by decoupling this problem in two optimizing issues. The first problem corresponds to the selection of the power generated by all non-voltage controlled distributed generators; While the second problem lies in the solution of the classical power flow equations in direct current networks. The solution of the master problem (first problem) is made by applying the elephant swarm water search algorithm, while the second problem (slave problem) is solved by a conventional Gauss-Seidel numerical method. The proposed hybrid methodology allows solving the power flow problem by using any basic programming language with minimum computational effort and well-precision when is compared with optimizing packages such as general algebraic modeling system/CONOPT solver and conventional metaheuristic techniques such as genetic algorithms. © Published under licence by IOP Publishing Ltd.eng
dc.description.sponsorshipUniversidad Tecnológica de Pereira, UTP: C2018P020 Department of Science, Information Technology and Innovation, Queensland Government, DSITI: Colciencias
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Physics Publishing
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076695717&doi=10.1088%2f1742-6596%2f1403%2f1%2f012010&partnerID=40&md5=9db251c0be8d6987441e58c8753270c9
dc.sourceScopus2-s2.0-85076695717
dc.titleOptimal power flow studies in direct current grids: An application of the bio-inspired elephant swarm water search algorithm
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, p. 149
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, p. 890
dcterms.bibliographicCitationMontoya, O.D., Garces, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) Journal of Energy Storage, 16, p. 250
dcterms.bibliographicCitationJusto, J.J., Mwasilu, F., Lee, J., Jung, J.W., AC-microgrids versus DC-microgrids with distributed energy resources: A review (2013) Renewable Sustainable Energy Rev., 24, p. 387
dcterms.bibliographicCitationPhurailatpam, C., Rajpurohit, B.S., Wang, L., Planning and optimization of autonomous DC microgrids for rural and urban applications in India (2018) Renewable Sustainable Energy Rev., 82, p. 194
dcterms.bibliographicCitationGandini, D., De Almeida, A.T., Direct current microgrids based on solar power systems and storage optimization, as a tool for cost-effective rural electrification (2017) Renewable Energy, 111, p. 275
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Grisales-Noreña, L.F., Optimal power dispatch of DGs in DC power grids: A hybrid Gauss-Seidel-genetic-algorithm methodology for solving the OPF problem (2018) WSEAS Transactions on Power Systems, 13, p. 335
dcterms.bibliographicCitationVelasquez, O.S., Montoya, O.D., Garrido Arevalo, V.M., Grisales-Noreña, L.F., Optimal power flow in direct-current power grids via black hole optimization (2019) Advances in Electrical and Electronic Engineering, 17 (1), p. 24
dcterms.bibliographicCitationMandal, S., Elephant swarm water search algorithm for global optimization (2018) SADHANA, 43 (1), p. 1
dcterms.bibliographicCitationGarces, A., Montoya, O.D., Torres, R., (2016) 25th International Symposium on Industrial Electronics (ISIE), p. 1212
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), p. 5496
dcterms.bibliographicCitationGarces, A., On the Convergence of newton's method in power flow studies for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), p. 5770
dcterms.bibliographicCitationTodescato, M., (2017) 56th Annual Conference on Decision and Control (CDC), p. 3258
dcterms.bibliographicCitationBarabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Transactions on Circuits and Systems I: Regular Papers, 63 (1), p. 114
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event1st Workshop on Modeling and Simulation for Science and Engineering, WMSSE 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1088/1742-6596/1403/1/012010
dc.subject.keywordsAcoustic generators
dc.subject.keywordsBiomimetics
dc.subject.keywordsDC power transmission
dc.subject.keywordsGenetic algorithms
dc.subject.keywordsLearning algorithms
dc.subject.keywordsModeling languages
dc.subject.keywordsNumerical methods
dc.subject.keywordsProblem oriented languages
dc.subject.keywordsWind power
dc.subject.keywordsComputational effort
dc.subject.keywordsDistributed generators
dc.subject.keywordsHybrid methodologies
dc.subject.keywordsMeta-heuristic optimization techniques
dc.subject.keywordsMeta-heuristic techniques
dc.subject.keywordsOptimal power flow problem
dc.subject.keywordsPower flow equations
dc.subject.keywordsRenewable power generation
dc.subject.keywordsElectric load flow
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (Colciencias) through the National Scholarship Program under Grant 727-2015 and in part by the Universidad Tecnológica de Bolívar under Project C2018P020.
dc.relation.conferencedate20 August 2019 through 21 August 2019
dc.type.spaConferencia
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid57212444429


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.