Show simple item record

Analysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces

dc.contributor.editorCallejas J.D.C.
dc.creatorSanchez-Hernandez S.A.
dc.creatorContreras-Ortiz S.H.
dc.identifier.citation2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings
dc.description.abstractBrain activity during perception and recognition of faces have been studied by researchers with the purpose to develop brain-computer interfaces and to study neurological disorders. In this paper, we analyzed evoked potentials as neurophysiological indicators and developed a model based on signal processing and machine learning techniques to find descriptive patterns that allow the differentiation of familiar and unfamiliar faces. We considered wave components such as P1, N170, N250, P300, and N400 to describe the events. Morphological analysis and wavelet transform were used for the feature extraction stage, and support vector machines and binomial logistic regression were evaluated for the classification stage. The best classification results were obtained with the morphological characteristics, where the highest classification accuracy was 80% on average. © 2018 IEEE.eng
dc.description.sponsorshipInstitute of Electrical and Electronics Engineers Colombia Section;Institute of Electrical and Electronics Engineers Consejo Andino
dc.format.mediumRecurso electrónico
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.titleAnalysis and Classification of Evoked Potentials in Response to Familiar and Unfamiliar Faces
dcterms.bibliographicCitationLopera, R.F., Procesamiento de caras: Bases neurológicas, trastornos y evaluación (2000) Revista de Neurología, 30 (5), pp. 1-5
dcterms.bibliographicCitationPérez, Y.B., (2014) Memoria de Rostros y Reconocimiento Emocional: Generalidades Teóricas, Bases Neurales y Patologías Asociadas Face Memory and Emotional Recognition: Theory, Neural Substrates and Related Pathologies, 28 (116), pp. 27-40
dcterms.bibliographicCitationOlivares, E.I., Saavedra, C., Iglesias, J., (2012) Potenciales Evocados Como Marcadores Neurofisiológicos de la Percepción y El Reconocimiento de Caras, pp. 27-38
dcterms.bibliographicCitationÖzbeyaz, A., Arica, S., Classification of EEG signals of familiar and unfamiliar face stimuli exploiting most discriminative channels (2017) Turkish J. Electr. Eng. Comput. Sci., 25, pp. 3342-3354
dcterms.bibliographicCitationLi, Y., Single Trial EEG Classification Applied to a Face Recognition Experiment Using Different Feature Extraction Methods (2015) IEEE Eng Med Biol Soc., pp. 7246-7249
dcterms.bibliographicCitationHenson, R.N., Multi-modal face dataset (2009) Funct. Imaging Lab., p. 2018. ,
dcterms.bibliographicCitation(1991) SPM Software-Statistical Parametric Mapping, pp. 3-4. ,, Members & collaborators of the Wellcome Trust Centre for Neuroimaging 13/04/2012
dcterms.bibliographicCitationBarry, R., Johnstone, S., Clarke, A., A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials (2003) Clinical Neurophysiology, 114 (2), pp. 184-198
dcterms.bibliographicCitationRestrepo, F., Tamayo-Orrego, L., Parra Sanchez, J., Vera Gonzalez, A., Moscoso Ariza, O., P300-wave modulation in a group of Colombian children with attention deficit/hyperactivity disorder (2011) Acta Neurol. Colomb, 27 (3), pp. 146-153
dcterms.bibliographicCitationChethan, P., Cox, M., Frequency characteristics of wavelets (2002) IEEE Transactions on Power Delivery, 17 (3), pp. 800-804
dcterms.bibliographicCitationAhmadi, A., Dehzangi, O., Jafari, R., Brain-computer interface signal processing algorithms: A computational cost vs accuracy analysis for wearable computers (2012) Wearable and Implantable Body Sensor Networks (BSN), 2012 Ninth International Conference On. IEEE, pp. 40-45
dcterms.bibliographicCitationZheng, T., Ernest, H., Smitha, K.G., Vinod, A.P., (2015) Detection of Familiar and Unfamiliar Images Using EEG-based Brain-Computer Interface
dcterms.bibliographicCitationHenson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J., Trujillo-Barreto, N.J., (2011) A Parametric Empirical Bayesian Framework for the EEG / MEG Inverse Problem: Generative Models for Multi-subject and Multi-modal Integration, 5, pp. 1-16. , August
dcterms.bibliographicCitationIssn, O., (2017) Actualidades en Psicología Memoria de Rostros y Reconocimiento Emocional: Generalidades Teóricas, Bases Neurales y Patologías Asociadas Face Memory and Emotional Recognition: Theory, Neural, pp. 1-13
dcterms.bibliographicCitationLiu, J., Higuchi, M., Marantz, A., Kanwisher, N., Stages of processing in face perception: An MEG study (2002) Nat. Neuroscience, 5, pp. 910-916
dcterms.bibliographicCitationAlexandra, P., Cabrera, C., (2011) Extracción y Selección de Características Discriminantes para la Detección de TDAH en Registros de Potenciales Evocados Cognitivos
dc.source.event9th IEEE ANDESCON, ANDESCON 2018
dc.subject.keywordsEvoked potentials
dc.subject.keywordsFace recognition
dc.subject.keywordsMachine learning
dc.subject.keywordsWavelet transform
dc.subject.keywordsArtificial intelligence
dc.subject.keywordsBioelectric potentials
dc.subject.keywordsBiomedical signal processing
dc.subject.keywordsBrain computer interface
dc.subject.keywordsLearning systems
dc.subject.keywordsWavelet transforms
dc.subject.keywordsBinomial logistic regressions
dc.subject.keywordsClassification accuracy
dc.subject.keywordsClassification results
dc.subject.keywordsFeature extraction stages
dc.subject.keywordsMachine learning techniques
dc.subject.keywordsMorphological analysis
dc.subject.keywordsMorphological characteristic
dc.subject.keywordsPerception and recognition
dc.subject.keywordsFace recognition
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate22 August 2018 through 24 August 2018

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as