Mostrar el registro sencillo del ítem

dc.contributor.editorFigueroa-Garcia J.C.
dc.contributor.editorDuarte-Gonzalez M.
dc.contributor.editorJaramillo-Isaza S.
dc.contributor.editorOrjuela-Canon A.D.
dc.contributor.editorDiaz-Gutierrez Y.
dc.creatorOspina-Mateus H.
dc.creatorQuintana Jiménez, Leonardo Augusto
dc.creatorLópez-Valdés F.J.
dc.creatorMorales-Londoño N.
dc.creatorSalas-Navarro K.
dc.date.accessioned2020-03-26T16:33:11Z
dc.date.available2020-03-26T16:33:11Z
dc.date.issued2019
dc.identifier.citationCommunications in Computer and Information Science; Vol. 1052, pp. 309-320
dc.identifier.isbn9783030310189
dc.identifier.issn18650929
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9195
dc.description.abstractObjective: Analyze the road crashes in Cartagena (Colombia) and the factors associated with the collision and severity. The aim is to establish a set of rules for defining countermeasures to improve road safety. Methods: Data mining and machine learning techniques were used in 7894 traffic accidents from 2016 to 2017. The severity was determined between low (84%) and high (16%). Five classification algorithms to predict the accident severity were applied with WEKA Software (Waikato Environment for Knowledge Analysis). Including Decision Tree (DT-J48), Rule Induction (PART), Support Vector Machines (SVMs), Naïve Bayes (NB), and Multilayer Perceptron (MLP). The effectiveness of each algorithm was implemented using cross-validation with 10-fold. Decision rules were defined from the results of the different methods. Results: The methods applied are consistent and similar in the overall results of precision, accuracy, recall, and area under the ROC curve. Conclusions: 12 decision rules were defined based on the methods applied. The rules defined show motorcyclists, cyclists, including pedestrians, as the most vulnerable road users. Men and women motorcyclists between 20–39 years are prone in accidents with high severity. When a motorcycle or cyclist is not involved in the accident, the probable severity is low. © 2019, Springer Nature Switzerland AG.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075691310&doi=10.1007%2f978-3-030-31019-6_27&partnerID=40&md5=a518350f9def3052c1bbed88065c0e3f
dc.titleUsing Data-Mining Techniques for the Prediction of the Severity of Road Crashes in Cartagena, Colombia
dcterms.bibliographicCitation(2018) Global Status Report on Road Safety 2018, , https://apps.who.int/iris/bitstream/handle/10665/276462/9789241565684-eng.pdf?ua=1
dcterms.bibliographicCitationSavolainen, P., Mannering, F., Probabilistic models of motorcyclists’ injury severities in single-and multi-vehicle crashes (2007) In English). Accid. Anal. Prev., 39 (5), pp. 955-963
dcterms.bibliographicCitationAbdelwahab, H., Abdel-Aty, M., Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections (2001) Transp. Res. Rec.: J. Transp. Res. Board, 1746, pp. 6-13
dcterms.bibliographicCitationHashmienejad, S.H.-A., Hasheminejad, S.M.H., Traffic accident severity prediction using a novel multi-objective genetic algorithm (2017) Int. J. Crashworthiness, 22 (4), pp. 425-440
dcterms.bibliographicCitationSohn, S., Shin, H., Data mining for road traffic accident type classification (2001) Ergonomics, 44, pp. 107-117
dcterms.bibliographicCitationHuang, H., Abdel-Aty, M., Multilevel data and Bayesian analysis in traffic safety (2010) Accid. Anal. Prev., 42 (6), pp. 1556-1565
dcterms.bibliographicCitationLi, Z., Liu, P., Wang, W., Xu, C., Using support vector machine models for crash injury severity analysis (2012) Accid. Anal. Prev., 45, pp. 478-486
dcterms.bibliographicCitationDelen, D., Tomak, L., Topuz, K., Eryarsoy, E., Investigating injury severity risk factors in automobile crashes with predictive analytics and sensitivity analysis methods (2017) J. Transp. Health, 4, pp. 118-131
dcterms.bibliographicCitationBalasubramanian, V., Jagannath, M., Detecting motorcycle rider local physical fatigue and discomfort using surface electromyography and seat interface pressure (2014) Transp. Res. Part F, 22, pp. 150-158
dcterms.bibliographicCitationShafiei, U.K.M., Karuppiah, K., Tmrin, S.B.M., Meng, G.Y., Rasdi, I., Alias, A.N., The effectiveness of new model of motorcycle seat with built-in lumbar support (2015) Jurnal Teknologi, 77 (27), pp. 97-103. , in English
dcterms.bibliographicCitationOspina-Mateus, H., Jiménez, L.A.Q., Understanding the impact of physical fatigue and postural comfort experienced during motorcycling: A systematic review (2019) J. Transp. Health, 12, pp. 290-318
dcterms.bibliographicCitation(2017) Seguridad De Los vehículos De Motor De Dos Y Tres Ruedas: Manual De Seguridad Vial Para Decisores Y Profesionales, , https://apps.who.int/iris/bitstream/handle/10665/272757/9789243511924-spa.pdf?sequence=1&isAllowed=y
dcterms.bibliographicCitationSegui-Gomez, M., Lopez-Valdes, F.J., Recognizing the importance of injury in other policy forums: The case of motorcycle licensing policy in Spain (2007) Inj. Prev. Short Surv., 13 (6), pp. 429-430. , in English
dcterms.bibliographicCitationSchneider Iv, W.H., Savolainen, P.T., van Boxel, D., Beverley, R., Examination of factors determining fault in two-vehicle motorcycle crashes (2012) In English). Accid. Anal. Prev., 45, pp. 669-676
dcterms.bibliographicCitationIvers, R.Q., Does an on-road motorcycle coaching program reduce crashes in novice riders? A randomised control trial (in English) (2016) Accid. Anal. Prev., 86, pp. 40-46
dcterms.bibliographicCitationDonate-López, C., Espigares-Rodríguez, E., Jiménez-Moleón, J.J., De Dios Luna-del-Castillo, J., Bueno-Cavanillas, A., Lardelli-Claret, P.: The association of age, sex and helmet use with the risk of death for occupants of two-wheeled motor vehicles involved in traffic crashes in Spain (2010) Accid. Anal. Prev, 42 (1), pp. 297-306
dcterms.bibliographicCitationAlbalate, D., Fernández-Villadangos, L., Motorcycle injury severity in Barcelona: The role of vehicle type and congestion (2010) In English). Traffic Inj. Prev., 11 (6), pp. 623-631
dcterms.bibliographicCitationClabaux, N., Brenac, T., Perrin, C., Magnin, J., Canu, B., van Elslande, P., Motorcyclists’ speed and “looked-but-failed-to-see” accidents (2012) In English). Accid. Anal. Prev., 49, pp. 73-77
dcterms.bibliographicCitationSager, B., Yanko, M.R., Spalek, T.M., Froc, D.J., Bernstein, D.M., Dastur, F.N., Motorcyclist’s lane position as a factor in right-of-way violation collisions: A driving simulator study (2014) In English). Accid. Anal. Prev., 72, pp. 325-329
dcterms.bibliographicCitationRizzi, M., Strandroth, J., Holst, J., Tingvall, C., Does the improved stability offered by motorcycle antilock brakes (ABS) make sliding crashes less common? In-depth analysis of fatal crashes involving motorcycles fitted with ABS (2016) In English). Traffic Inj. Prev., 17 (6), pp. 625-632
dcterms.bibliographicCitationClarke, D.D., Ward, P., Bartle, C., Truman, W., The role of motorcyclist and other driver behaviour in two types of serious accident in the UK (2007) In English). Accid. Anal. Prev., 39 (5), pp. 974-981
dcterms.bibliographicCitationLópez-Valdés, F.J., García, D., Pedrero, D., Moreno, J.L., Accidents of motorcyclists against roadside infrastructure (2005) IUTAM Symposium on Impact Biomechanics: From Fundamental Insights to Applications, 124, pp. 163-170. , vol., pp., Dublin
dcterms.bibliographicCitationBrown, J., Schonstein, L., Ivers, R., Keay, L., Children and motorcycles: A systematic review of risk factors and interventions (2018) Inj. Prev., 24 (2), pp. 166-175
dcterms.bibliographicCitationElliott, M.A., Baughan, C.J., Sexton, B.F., Errors and violations in relation to motorcyclists’ crash risk (In English) (2007) Accid. Anal. Prev., 39 (3), pp. 491-499
dcterms.bibliographicCitationTruong, L.T., Nguyen, H.T., de Gruyter, C., Mobile phone use while riding a motorcycle and crashes among university students (2019) Traffic Inj. Prev., 20, pp. 1-7
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event6th Workshop on Engineering Applications, WEA 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-030-31019-6_27
dc.subject.keywordsData mining
dc.subject.keywordsPrediction
dc.subject.keywordsRoad crashes
dc.subject.keywordsSeverity
dc.subject.keywordsDecision trees
dc.subject.keywordsForecasting
dc.subject.keywordsHighway accidents
dc.subject.keywordsMotor transportation
dc.subject.keywordsMotorcycles
dc.subject.keywordsRoads and streets
dc.subject.keywordsSupport vector machines
dc.subject.keywordsArea under the ROC curve
dc.subject.keywordsClassification algorithm
dc.subject.keywordsKnowledge analysis
dc.subject.keywordsMachine learning techniques
dc.subject.keywordsMulti layer perceptron
dc.subject.keywordsRoad crash
dc.subject.keywordsSeverity
dc.subject.keywordsSupport vector machine (SVMs)
dc.subject.keywordsData mining
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesfor first author was covered by (CEIBA)?Gobernaci?n de Bol?var (Colombia). We thank the Administrative Department of Traffic and Transportation (DATT) in the accompaniment and support of the information required for this investigation.
dc.relation.conferencedate16 October 2019 through 18 October 2019
dc.type.spaConferencia
dc.identifier.orcid57194034904
dc.identifier.orcid57195939566
dc.identifier.orcid23110963500
dc.identifier.orcid57195913974
dc.identifier.orcid57193504630


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.