Mostrar el registro sencillo del ítem
Using Data-Mining Techniques for the Prediction of the Severity of Road Crashes in Cartagena, Colombia
dc.contributor.editor | Figueroa-Garcia J.C. | |
dc.contributor.editor | Duarte-Gonzalez M. | |
dc.contributor.editor | Jaramillo-Isaza S. | |
dc.contributor.editor | Orjuela-Canon A.D. | |
dc.contributor.editor | Diaz-Gutierrez Y. | |
dc.creator | Ospina-Mateus H. | |
dc.creator | Quintana Jiménez, Leonardo Augusto | |
dc.creator | López-Valdés F.J. | |
dc.creator | Morales-Londoño N. | |
dc.creator | Salas-Navarro K. | |
dc.date.accessioned | 2020-03-26T16:33:11Z | |
dc.date.available | 2020-03-26T16:33:11Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Communications in Computer and Information Science; Vol. 1052, pp. 309-320 | |
dc.identifier.isbn | 9783030310189 | |
dc.identifier.issn | 18650929 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9195 | |
dc.description.abstract | Objective: Analyze the road crashes in Cartagena (Colombia) and the factors associated with the collision and severity. The aim is to establish a set of rules for defining countermeasures to improve road safety. Methods: Data mining and machine learning techniques were used in 7894 traffic accidents from 2016 to 2017. The severity was determined between low (84%) and high (16%). Five classification algorithms to predict the accident severity were applied with WEKA Software (Waikato Environment for Knowledge Analysis). Including Decision Tree (DT-J48), Rule Induction (PART), Support Vector Machines (SVMs), Naïve Bayes (NB), and Multilayer Perceptron (MLP). The effectiveness of each algorithm was implemented using cross-validation with 10-fold. Decision rules were defined from the results of the different methods. Results: The methods applied are consistent and similar in the overall results of precision, accuracy, recall, and area under the ROC curve. Conclusions: 12 decision rules were defined based on the methods applied. The rules defined show motorcyclists, cyclists, including pedestrians, as the most vulnerable road users. Men and women motorcyclists between 20–39 years are prone in accidents with high severity. When a motorcycle or cyclist is not involved in the accident, the probable severity is low. © 2019, Springer Nature Switzerland AG. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075691310&doi=10.1007%2f978-3-030-31019-6_27&partnerID=40&md5=a518350f9def3052c1bbed88065c0e3f | |
dc.title | Using Data-Mining Techniques for the Prediction of the Severity of Road Crashes in Cartagena, Colombia | |
dcterms.bibliographicCitation | (2018) Global Status Report on Road Safety 2018, , https://apps.who.int/iris/bitstream/handle/10665/276462/9789241565684-eng.pdf?ua=1 | |
dcterms.bibliographicCitation | Savolainen, P., Mannering, F., Probabilistic models of motorcyclists’ injury severities in single-and multi-vehicle crashes (2007) In English). Accid. Anal. Prev., 39 (5), pp. 955-963 | |
dcterms.bibliographicCitation | Abdelwahab, H., Abdel-Aty, M., Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections (2001) Transp. Res. Rec.: J. Transp. Res. Board, 1746, pp. 6-13 | |
dcterms.bibliographicCitation | Hashmienejad, S.H.-A., Hasheminejad, S.M.H., Traffic accident severity prediction using a novel multi-objective genetic algorithm (2017) Int. J. Crashworthiness, 22 (4), pp. 425-440 | |
dcterms.bibliographicCitation | Sohn, S., Shin, H., Data mining for road traffic accident type classification (2001) Ergonomics, 44, pp. 107-117 | |
dcterms.bibliographicCitation | Huang, H., Abdel-Aty, M., Multilevel data and Bayesian analysis in traffic safety (2010) Accid. Anal. Prev., 42 (6), pp. 1556-1565 | |
dcterms.bibliographicCitation | Li, Z., Liu, P., Wang, W., Xu, C., Using support vector machine models for crash injury severity analysis (2012) Accid. Anal. Prev., 45, pp. 478-486 | |
dcterms.bibliographicCitation | Delen, D., Tomak, L., Topuz, K., Eryarsoy, E., Investigating injury severity risk factors in automobile crashes with predictive analytics and sensitivity analysis methods (2017) J. Transp. Health, 4, pp. 118-131 | |
dcterms.bibliographicCitation | Balasubramanian, V., Jagannath, M., Detecting motorcycle rider local physical fatigue and discomfort using surface electromyography and seat interface pressure (2014) Transp. Res. Part F, 22, pp. 150-158 | |
dcterms.bibliographicCitation | Shafiei, U.K.M., Karuppiah, K., Tmrin, S.B.M., Meng, G.Y., Rasdi, I., Alias, A.N., The effectiveness of new model of motorcycle seat with built-in lumbar support (2015) Jurnal Teknologi, 77 (27), pp. 97-103. , in English | |
dcterms.bibliographicCitation | Ospina-Mateus, H., Jiménez, L.A.Q., Understanding the impact of physical fatigue and postural comfort experienced during motorcycling: A systematic review (2019) J. Transp. Health, 12, pp. 290-318 | |
dcterms.bibliographicCitation | (2017) Seguridad De Los vehículos De Motor De Dos Y Tres Ruedas: Manual De Seguridad Vial Para Decisores Y Profesionales, , https://apps.who.int/iris/bitstream/handle/10665/272757/9789243511924-spa.pdf?sequence=1&isAllowed=y | |
dcterms.bibliographicCitation | Segui-Gomez, M., Lopez-Valdes, F.J., Recognizing the importance of injury in other policy forums: The case of motorcycle licensing policy in Spain (2007) Inj. Prev. Short Surv., 13 (6), pp. 429-430. , in English | |
dcterms.bibliographicCitation | Schneider Iv, W.H., Savolainen, P.T., van Boxel, D., Beverley, R., Examination of factors determining fault in two-vehicle motorcycle crashes (2012) In English). Accid. Anal. Prev., 45, pp. 669-676 | |
dcterms.bibliographicCitation | Ivers, R.Q., Does an on-road motorcycle coaching program reduce crashes in novice riders? A randomised control trial (in English) (2016) Accid. Anal. Prev., 86, pp. 40-46 | |
dcterms.bibliographicCitation | Donate-López, C., Espigares-Rodríguez, E., Jiménez-Moleón, J.J., De Dios Luna-del-Castillo, J., Bueno-Cavanillas, A., Lardelli-Claret, P.: The association of age, sex and helmet use with the risk of death for occupants of two-wheeled motor vehicles involved in traffic crashes in Spain (2010) Accid. Anal. Prev, 42 (1), pp. 297-306 | |
dcterms.bibliographicCitation | Albalate, D., Fernández-Villadangos, L., Motorcycle injury severity in Barcelona: The role of vehicle type and congestion (2010) In English). Traffic Inj. Prev., 11 (6), pp. 623-631 | |
dcterms.bibliographicCitation | Clabaux, N., Brenac, T., Perrin, C., Magnin, J., Canu, B., van Elslande, P., Motorcyclists’ speed and “looked-but-failed-to-see” accidents (2012) In English). Accid. Anal. Prev., 49, pp. 73-77 | |
dcterms.bibliographicCitation | Sager, B., Yanko, M.R., Spalek, T.M., Froc, D.J., Bernstein, D.M., Dastur, F.N., Motorcyclist’s lane position as a factor in right-of-way violation collisions: A driving simulator study (2014) In English). Accid. Anal. Prev., 72, pp. 325-329 | |
dcterms.bibliographicCitation | Rizzi, M., Strandroth, J., Holst, J., Tingvall, C., Does the improved stability offered by motorcycle antilock brakes (ABS) make sliding crashes less common? In-depth analysis of fatal crashes involving motorcycles fitted with ABS (2016) In English). Traffic Inj. Prev., 17 (6), pp. 625-632 | |
dcterms.bibliographicCitation | Clarke, D.D., Ward, P., Bartle, C., Truman, W., The role of motorcyclist and other driver behaviour in two types of serious accident in the UK (2007) In English). Accid. Anal. Prev., 39 (5), pp. 974-981 | |
dcterms.bibliographicCitation | López-Valdés, F.J., García, D., Pedrero, D., Moreno, J.L., Accidents of motorcyclists against roadside infrastructure (2005) IUTAM Symposium on Impact Biomechanics: From Fundamental Insights to Applications, 124, pp. 163-170. , vol., pp., Dublin | |
dcterms.bibliographicCitation | Brown, J., Schonstein, L., Ivers, R., Keay, L., Children and motorcycles: A systematic review of risk factors and interventions (2018) Inj. Prev., 24 (2), pp. 166-175 | |
dcterms.bibliographicCitation | Elliott, M.A., Baughan, C.J., Sexton, B.F., Errors and violations in relation to motorcyclists’ crash risk (In English) (2007) Accid. Anal. Prev., 39 (3), pp. 491-499 | |
dcterms.bibliographicCitation | Truong, L.T., Nguyen, H.T., de Gruyter, C., Mobile phone use while riding a motorcycle and crashes among university students (2019) Traffic Inj. Prev., 20, pp. 1-7 | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 6th Workshop on Engineering Applications, WEA 2019 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1007/978-3-030-31019-6_27 | |
dc.subject.keywords | Data mining | |
dc.subject.keywords | Prediction | |
dc.subject.keywords | Road crashes | |
dc.subject.keywords | Severity | |
dc.subject.keywords | Decision trees | |
dc.subject.keywords | Forecasting | |
dc.subject.keywords | Highway accidents | |
dc.subject.keywords | Motor transportation | |
dc.subject.keywords | Motorcycles | |
dc.subject.keywords | Roads and streets | |
dc.subject.keywords | Support vector machines | |
dc.subject.keywords | Area under the ROC curve | |
dc.subject.keywords | Classification algorithm | |
dc.subject.keywords | Knowledge analysis | |
dc.subject.keywords | Machine learning techniques | |
dc.subject.keywords | Multi layer perceptron | |
dc.subject.keywords | Road crash | |
dc.subject.keywords | Severity | |
dc.subject.keywords | Support vector machine (SVMs) | |
dc.subject.keywords | Data mining | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | for first author was covered by (CEIBA)?Gobernaci?n de Bol?var (Colombia). We thank the Administrative Department of Traffic and Transportation (DATT) in the accompaniment and support of the information required for this investigation. | |
dc.relation.conferencedate | 16 October 2019 through 18 October 2019 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 57194034904 | |
dc.identifier.orcid | 57195939566 | |
dc.identifier.orcid | 23110963500 | |
dc.identifier.orcid | 57195913974 | |
dc.identifier.orcid | 57193504630 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.