Mostrar el registro sencillo del ítem

dc.creatorMesa J.A.
dc.creatorEsparragoza I.
dc.creatorMaury H.
dc.date.accessioned2020-03-26T16:33:10Z
dc.date.available2020-03-26T16:33:10Z
dc.date.issued2019
dc.identifier.citationInternational Journal of Sustainable Engineering
dc.identifier.issn19397038
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9188
dc.description.abstractModularity is one of the most useful tools employed in the product development process. Regarding functionality, the use of modules is common to generate flexible platforms to manufacture products and product families that require functional variations. In the current globalized market, the mass individualization or personalization is the preferred production model that delivers cost-effectiveness and satisfaction at the level of the market of one. In this model, the modularity is employed as a powerful concept applied not only for the manufacture but also for the use and final disposal stages, in which the design of modules provides functionalities and features that satisfy a variety of specifications for different market segments. Despite the existence of approaches in modularity and its usefulness in product development, it is possible to identify a lack of analysis of modular and open architecture to enhance the sustainability performance of products regarding strategies to diminish adverse impacts during their lifecycle. This paper provides an analysis of the influence and potential of Modular Architecture Principles–MAPs in the sustainable design of open architecture products. Additionally, lifecycle considerations are analysed to identify and propose strategies that enforce the sustainability performance of products concerning personalization from early design stages Abbreviations: MAPs: Modular Architecture Principles; FMS: Flexible Manufacturing System; RMS: Reconfigurable Manufacturing System; EOL: End Of Life; LCA: Life Cycle Assessment; QFD: Quality Function Deployment; DFMA: Design For Manufacturing And Assembly. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherTaylor and Francis Ltd.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068372656&doi=10.1080%2f19397038.2019.1634157&partnerID=40&md5=19afd6509737f81e9188cb508bf6e039
dc.titleModular architecture principles–MAPs: a key factor in the development of sustainable open architecture products
dcterms.bibliographicCitationAmeli, M., Mansour, S., Ahmadi-Javid, A., A Multi-Objective Model for Selecting Design Alternatives and End-Of-Life Options under Uncertainty: A Sustainable Approach (2016) Resources, Conservation and Recycling, 109, pp. 123-136
dcterms.bibliographicCitationBhamu, J., Sangwan, K., Lean Manufacturing: Literature Review and Research Issues (2014) International Journal of Operations & Production Management, 34 (7), pp. 876-940
dcterms.bibliographicCitationByggeth, S., Broman, G., Robert, K.-H., A Method for Sustainable Product Development Based on A Modular System of Guiding Questions (2007) Journal of Cleaner Production, 15, pp. 1-11
dcterms.bibliographicCitationChang, T.-R., Wang, C.-S., Wang, C.-C., A Systematic Approach for Green Design in Modular Product Development (2013) International Journal of Advanced Manufacturing Technology, 68, pp. 2729-2741
dcterms.bibliographicCitationChung-Shing, W., Web-Based Modular Interface Geometries with Constraints in Assembly Models (2009) Computers & Industrial Engineering, 56 (4), pp. 1675-1686
dcterms.bibliographicCitationCor, E., Zwolinski, P., A Procedure to Define the Best Design Intervention Strategy on A Product for A Sustainable Behavior of the User (2014) Procedia CIRP, 15, pp. 425-430
dcterms.bibliographicCitationDahmus, J., Gonzalez-Zugasti, J., Otto, K., Modular Product Architecture (2001) Design Studies, 22 (1), pp. 409-424
dcterms.bibliographicCitationDevanathan, S., Ramanujan, D., Bernstein, W.Z., Zhao, F., Ramani, K., Integration of Sustainability into Early Design through the Function Impact Matrix (2010) Journal of Mechanial Design, 132
dcterms.bibliographicCitationEddy, D., Krishnamurty, S., Grosse, I., Wileden, J., Lewis, K., A Predictive Modelling-Based Material Selection Method for Sustainable Product Design (2015) Jorunal of Engineering Design, 26 (10-12), pp. 365-390
dcterms.bibliographicCitationErixon, G., von Yxkull, A., Arnström, A., Modularity - the Basis for Product and Factory Reengineering (1996) CIRP Annals, 45, pp. 1-6
dcterms.bibliographicCitationFiorineschi, L., Fricilli, F., Rissone, P., Cascini, G., Product Architecture Definition: Evaluating the Potentiality of TRIZ Tools (2015) Procedia Engineering, 131, pp. 359-371
dcterms.bibliographicCitationFujita, K., Product Variety Optimization under Modular Architecture (2002) Computer-Aided Design, 34 (12), pp. 953-965
dcterms.bibliographicCitationGifford, R., Nilsson, A., Personal and Social Factors that Influence Pro-Environmental Concern and Behaviour: A Review (2014) International Journal of Psychology, 49 (3), pp. 141-157
dcterms.bibliographicCitationGiudice, F., Balisteri, F., Risitano, G., A Concurrent Design Method Based on DFMA-FEA Integrated Approach (2009) Concurrent Engineering, 17 (3), pp. 183-202
dcterms.bibliographicCitationGu, P., Hashemian, M., Nee, A., Adaptable Design (2004) CIRP Annals, 53 (2), pp. 539-557
dcterms.bibliographicCitationHe, B., Tang, W., Wang, J., Huang, S., Deng, Z., Wang, Y., Low-Carbon Conceptual Design Based on Product Lifecycle Assessment (2015) International Journal of Advanced Manufacturing Technology, 81, pp. 863-874
dcterms.bibliographicCitationHu, S., Ko, J., Weyland, L., ElMaraghy, H., Lien, T., Koren, Y., Shpitalni, M., Assembly System Design and Operations for Product Variety (2011) CIRP Annals-Manufacturing Technology, 60 (2), pp. 715-733. , …
dcterms.bibliographicCitationJian, P., Leng, J., Ding, K., Gu, P., Koren, Y., Social Manufacturing as a Sustainable Paradigm for Mass Individualization (2016) Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
dcterms.bibliographicCitationKimura, F., Kato, S., Hata, T., Masuda, T., Product Modularization for Parts Reuse in Inverse Manufacturing (2001) CIRP Annals - Manufacturing Technology, 50 (1), pp. 89-92
dcterms.bibliographicCitationKissling, R., Fitzpatrick, C., Boeni, H., Luepschen, C., Andrew, S., Dickenson, J., Definition of Generic Re-Use Operating Models for Electrical and Electronic Equipment (2012) Resources, Conservation and Recycling, 65, pp. 85-99
dcterms.bibliographicCitationKoga, T., Aoyama, K., Modular Design Method for Sustainable Life-Cycle of Product Family considering Future Market Changes (2008) Proceedings of the ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, , Brooklyn, New York
dcterms.bibliographicCitationKollmuss, A., Agyeman, J., Mind the Gap: Why Do People Act Environmentally and What are the Barriers to Pro-Environmental Behavior? (2010) Environmental Education Research, 8 (3), pp. 239-260
dcterms.bibliographicCitationKoren, Y., Hu, S., Gu, P., Shpitalni, M., Open-Architecture Products (2013) CIRP Annals - Manufacturing Technology, 62, pp. 719-729
dcterms.bibliographicCitationKoren, Y., Shpitalni, M., Gu, P., Hu, S., Product Design for Mass-Individualization (2015) Procedia CIRP - 25th Design Conference Innovative Product Creation, 36, pp. 64-71
dcterms.bibliographicCitationKovács, G., Corporate Environmental Responsibility in the Supply Chain (2008) Journal of Cleaner Production, 16 (15), pp. 1571-1578
dcterms.bibliographicCitationKriwet, A., Zussman, E., Seliger, G., Systematic Integration of Design-For-Recycling into Product Design (1995) International Journal of Production Economics, 38 (1), pp. 15-22
dcterms.bibliographicCitationKyoung-Yun, K., Manley, D., Yang, H., Ontology-Based Assembly Design and Information Sharing for Collaborative Product Development (2006) Computer-Aided Design, 38 (12), pp. 1233-1250
dcterms.bibliographicCitationLu, B., Li, B., Wang, L., Yang, J., Liu, J., Wang, X., Reusability Based on Life Cycle Sustainability Assessment: Case Study on WEEE (2014) Procedia CIRP, 15, pp. 473-478
dcterms.bibliographicCitationMa, J., Kremer, G., A Sustainable Modular Product Design Approach with Key Components and Uncertain End-Of-Life Strategy Consideration (2016) The International Journal of Advanced Manufacturing Technology, 85 (1), pp. 741-763
dcterms.bibliographicCitationMesa, J., Maury, H., Arrieta, R., Bula, A., Riba, C., Characterization of Modular Architecture Principles Towards Reconfiguration: A Firts Approach in Its Selection Process (2015) International Journal of Advanced Manufacturing Technology, 80 (1), pp. 221-232
dcterms.bibliographicCitationMutha, A., Pokharel, S., Strategic Network Design for Reverse Logistics and Remanufacturing Using New and Old Product Modules (2009) Computers & Industrial Engineering, 56 (1), pp. 334-346
dcterms.bibliographicCitationOrlitzky, M., Siegel, D., Waldman, D., Strategic Corporate Social Responsibility and Environmental Sus (2011) Business & Society, 50 (1), pp. 6-27
dcterms.bibliographicCitationRamani, K., Ramanujan, D., Bernstein, W.Z., Zhao, F., Sutherland, J., Handwerker, C., Thurson, D., Integrated Sustainable Lifecycle Design: A Review (2010) Journal of Mechanical Design, 136. , …
dcterms.bibliographicCitationRemery, M., Mascle, C., Agard, B., A New Method for Evaluating the Best Product End-Of-Life Strategy during the Early Design Phase (2012) Journal of Engineering Design, 23 (6), pp. 419-441
dcterms.bibliographicCitationRizzi, F., Bartolozzi, I., Borghini, A., Frey, M., Environmental Management of End-Of-Life Products: Nine Factors of Sustainability in Collaborative Networks (2012) Business Strategy and the Environment, 22 (8), pp. 561-572
dcterms.bibliographicCitationRomli, A., Prickett, P., Setchi, R., Soe, S., Integrated Eco-Design Decision-Making for Sustainable Product Development (2015) International Journal of Production Research, 53 (2), pp. 549-571
dcterms.bibliographicCitationRusinko, C., Green Manufacturing: An Evaluation of Environmentally Sustainable Manufacturing Practices and Their Impact on Competitive Outcomes (2007) IEEE Transactions on Engineering Management, 54 (3), pp. 445-454
dcterms.bibliographicCitationSeliger, G., Weinert, N., Zettl, M., Module Configurator for the Development of Products for Ease of Remanufacturing (2007) Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses, , Takata S., Umeda Y., London, Springer
dcterms.bibliographicCitationShrivastava, P., Berger, S., Sustainability Principles: A Review and Directions (2010) Organization Management Journal, 7 (4), pp. 246-261
dcterms.bibliographicCitationSimpson, T., Product Platform Design and Customization: Status and Promise (2004) Artificial Inteligence for Engineering Design, Analysis and Manufacturing, 18, pp. 3-20
dcterms.bibliographicCitationSmith, S., Yen, C.-C., Green Product Design through Product Modularization Using Atomic Theory (2010) Robotics and Computer-Integrated Manufacturing, 26 (6), pp. 790-798
dcterms.bibliographicCitationStevels, A., (1997) Optimization of the End-Of-Life System, , Ecodesign: A promising Approach. UNEP Working Group on sustainable Product Development
dcterms.bibliographicCitationSubramaniyam, P., Srinivassan, K., Prabaharan, M., Approach for Green Product Design (2011) International Journal of Innovation, Management and Technology, 2 (3), pp. 244-248
dcterms.bibliographicCitationTian, J., Chen, M., Sustainable Design for Automotive Products: Dismantling and Recycling of End-Of-Life Vehicles (2014) Waste Management, 34, pp. 458-467
dcterms.bibliographicCitationTseng, K., Lin, B., Han, C.-M., An Intelligent System for Sustainable Product Design at the Concept Development Stage (2012) Computer-Aided Design and Applications, 9 (3), pp. 397-408
dcterms.bibliographicCitationUmeda, Y., Fukushige, S., Tonoike, K., Kondoh, S., Product Modularity for Life Cycle Design (2008) CIRP Annals - Manufacturing Technology, 57 (1), pp. 13-16
dcterms.bibliographicCitationNews from the Entrepreneurship Community in Singapore (2016) START-UPS:Singaporean engineer builds the world’s first multi-configuration bicycle with help from ACE Start-up Grant(3), , http://www.upstartnews.sg/archive/03/05.html, 05, Retrieved 10May 2017
dcterms.bibliographicCitationVinodh, S., Rathod, G., Integration of ECQFD and LCA for Sustainable Product Design (2010) Journal of Cleaner Production, 18, pp. 833-842
dcterms.bibliographicCitationYan, J., Feng, C., Sustainable Design-Oriented Product Modularity Combined with 6R Concept: A Case Study of Rotor Laboratory Bench (2014) Clean Technologies and Environmental Policiy, 16, pp. 95-109
dcterms.bibliographicCitationYung, W., Chan, H., Wong, D., So, J., Choi, A., Eco-Redesign of a Personal Electronic Product Subject to the Energy-Using Product Directive (2012) International Journal of Production Research, 50 (5), pp. 1411-1423
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.doi10.1080/19397038.2019.1634157
dc.subject.keywordsDesign
dc.subject.keywordsModular architecture principles
dc.subject.keywordsModularity
dc.subject.keywordsOpen architecture
dc.subject.keywordsPersonalization
dc.subject.keywordsSustainability
dc.subject.keywordsArchitecture
dc.subject.keywordsCommerce
dc.subject.keywordsComputer aided manufacturing
dc.subject.keywordsCost effectiveness
dc.subject.keywordsDesign
dc.subject.keywordsDesign for manufacturability
dc.subject.keywordsEcodesign
dc.subject.keywordsFlexible manufacturing systems
dc.subject.keywordsProduct design
dc.subject.keywordsProduct development
dc.subject.keywordsQuality function deployment
dc.subject.keywordsReconfigurable architectures
dc.subject.keywordsSustainable development
dc.subject.keywordsDesign for manufacturing and assemblies
dc.subject.keywordsLife Cycle Assessment (LCA)
dc.subject.keywordsModular architectures
dc.subject.keywordsModularity
dc.subject.keywordsOpen architecture
dc.subject.keywordsPersonalizations
dc.subject.keywordsProduct development process
dc.subject.keywordsReconfigurable manufacturing system
dc.subject.keywordsLife cycle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid56079249600
dc.identifier.orcid6506807401
dc.identifier.orcid55281389200


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.