Mostrar el registro sencillo del ítem
Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks
dc.contributor.editor | Figueroa-Garcia J.C. | |
dc.contributor.editor | Duarte-Gonzalez M. | |
dc.contributor.editor | Jaramillo-Isaza S. | |
dc.contributor.editor | Orjuela-Canon A.D. | |
dc.contributor.editor | Diaz-Gutierrez Y. | |
dc.creator | Grisales-Noreña L.F. | |
dc.creator | Garzón Rivera O.D. | |
dc.creator | Montoya, Oscar Danilo | |
dc.creator | Ramos-Paja C.A. | |
dc.date.accessioned | 2020-03-26T16:33:09Z | |
dc.date.available | 2020-03-26T16:33:09Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Communications in Computer and Information Science; Vol. 1052, pp. 214-225 | |
dc.identifier.isbn | 9783030310189 | |
dc.identifier.issn | 18650929 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9184 | |
dc.description.abstract | In this paper is proposed a master-slave method for optimal location and sizing of distributed generators (DGs) in direct-current (DC) networks. In the master stage is used the genetic algorithm of Chu & Beasley (GA) for the location of DGs. In the slave stage three different continuous techniques are used: the Continuous genetic algorithm (CGA), the Black Hole optimization method (BH) and the particle swarm optimization (PSO) algorithm, in order to solve the problem of sizing. All of those techniques are combined to find the hybrid method that provides the best results in terms of power losses reduction and processing times. The reduction of the total power losses on the electrical network associated to the transport of energy is used as objective function, by also including a penalty to limit the power injected by the DGs on the grid, and considering all constraints associated to the DC grids. To verify the performance of the different hybrid methods studied, two test systems with 10 and 21 buses are implemented in MATLAB by considering the installation of three distributed generators. To solve the power flow equations, the slave stage uses successive approximations. The results obtained shown that the proposed methodology GA-BH provides the best trade-off between speed and power losses independent of the total power provided by the DGs and the network size. © 2019, Springer Nature Switzerland AG. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075643487&doi=10.1007%2f978-3-030-31019-6_19&partnerID=40&md5=552715280abdfa8f09e4602ff1f9016c | |
dc.title | Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks | |
dcterms.bibliographicCitation | Montoya, O.D., Garrido, V.M., Gil-González, W., Grisales-Noreña, L., Power flow analysis in DC grids: Two alternative numerical methods (2019) IEEE Trans. Circuits Syst. II, 1 | |
dcterms.bibliographicCitation | Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153 | |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J. Energy Storage, 21, pp. 1-8 | |
dcterms.bibliographicCitation | Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garces, A., Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electr. Power Syst. Res., 169, pp. 18-23 | |
dcterms.bibliographicCitation | Montoya, O.D., Grisales-Noreña, L.F., Optimal power dispatch of DGs in DC power grids: A hybrid Gauss-Seidel-Genetic-Algorithm methodology for solving the OPF problem (2018) WSEAS Trans. Power Syst., 13, pp. 335-346 | |
dcterms.bibliographicCitation | Velasquez, O., Giraldo, O.M., Arevalo, V.G., Noreña, L.G., Optimal power flow in direct-current power grids via black hole optimization (2019) Adv. Electr. Electron. Eng., 17 (1), pp. 24-32 | |
dcterms.bibliographicCitation | Wang, P., Zhang, L., Xu, D., Optimal sizing of distributed generations in DC microgrids with lifespan estimated model of batteries (2018) 2018 21St International Conference on Electrical Machines and Systems (ICEMS), pp. 2045-2049. , pp., October | |
dcterms.bibliographicCitation | Grisales Noreña, L.F., Restrepo Cuestas, B.J., Jaramillo Ramirez, F.E., Ubi-cación y dimensionamiento de generación distribuida: Una revisión (2017) Ciencia E Ingeniería Neogranadina, 27 (2), pp. 157-176. , https://revistas.unimilitar.edu.co/index.php/rcin/article/view/2344 | |
dcterms.bibliographicCitation | Grisales-Noreña, L.F., Gonzalez Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), p. 1018 | |
dcterms.bibliographicCitation | Mohamed Imran, A., Kowsalya, M., Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization (2014) Swarm Evol. Comput., 15, pp. 58-65 | |
dcterms.bibliographicCitation | Mahmoud Pesaran, H.A., Huy, P.D., Ramachandaramurthy, V.K., A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms (2017) Renew. Sustain. Energy Rev., 75, pp. 293-312 | |
dcterms.bibliographicCitation | Grisales, L.F., Grajales, A., Montoya, O.D., Hincapié, R.A., Granada, M., Optimal location and sizing of distributed generators using a hybrid methodology and considering different technologies (2015) 2015 IEEE 6Th Latin American Symposium on Circuits Systems (LASCAS), pp. 1-4. , pp., February | |
dcterms.bibliographicCitation | Chu, P., Beasley, J., A genetic algorithm for the generalised assignment problem (1997) Comput. Oper. Res., 24 (1), pp. 17-23 | |
dcterms.bibliographicCitation | Kennedy, J., Eberhart, R., Particle swarm optimization (1995) Proceedings of ICNN 1995-International Conference on Neural Networks, 4, pp. 1942-1948. , vol., pp., November | |
dcterms.bibliographicCitation | Bouchekara, H., Optimal power flow using black-hole-based optimization approach (2014) Appl. Soft Comput., 24, pp. 879-888 | |
dcterms.bibliographicCitation | Montoya, O.D., Grisales-Norena, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381 | |
dcterms.bibliographicCitation | Montoya, O.D., On linear analysis of the power flow equations for DC and AC grids with CPLs (2019) IEEE Trans. Circuits Syst. II, p. 1 | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 6th Workshop on Engineering Applications, WEA 2019 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1007/978-3-030-31019-6_19 | |
dc.subject.keywords | Direct-current networks | |
dc.subject.keywords | Distributed generation | |
dc.subject.keywords | Genetic algorithm | |
dc.subject.keywords | Metaheuristic optimization | |
dc.subject.keywords | Optimal power flow | |
dc.subject.keywords | Particle swarm optimization | |
dc.subject.keywords | DC power transmission | |
dc.subject.keywords | Distributed power generation | |
dc.subject.keywords | Economic and social effects | |
dc.subject.keywords | Electric load flow | |
dc.subject.keywords | Genetic algorithms | |
dc.subject.keywords | Location | |
dc.subject.keywords | Continuous genetic algorithms | |
dc.subject.keywords | Direct current | |
dc.subject.keywords | Distributed generator (DGs) | |
dc.subject.keywords | Distributed generators | |
dc.subject.keywords | Meta-heuristic optimizations | |
dc.subject.keywords | Optimal power flows | |
dc.subject.keywords | Particle swarm optimization algorithm | |
dc.subject.keywords | Successive approximations | |
dc.subject.keywords | Particle swarm optimization (PSO) | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.relation.conferencedate | 16 October 2019 through 18 October 2019 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 55791991200 | |
dc.identifier.orcid | 57212009687 | |
dc.identifier.orcid | 56919564100 | |
dc.identifier.orcid | 22836502400 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.