Mostrar el registro sencillo del ítem

dc.contributor.editorFigueroa-Garcia J.C.
dc.contributor.editorDuarte-Gonzalez M.
dc.contributor.editorJaramillo-Isaza S.
dc.contributor.editorOrjuela-Canon A.D.
dc.contributor.editorDiaz-Gutierrez Y.
dc.creatorGrisales-Noreña L.F.
dc.creatorGarzón Rivera O.D.
dc.creatorMontoya, Oscar Danilo
dc.creatorRamos-Paja C.A.
dc.date.accessioned2020-03-26T16:33:09Z
dc.date.available2020-03-26T16:33:09Z
dc.date.issued2019
dc.identifier.citationCommunications in Computer and Information Science; Vol. 1052, pp. 214-225
dc.identifier.isbn9783030310189
dc.identifier.issn18650929
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9184
dc.description.abstractIn this paper is proposed a master-slave method for optimal location and sizing of distributed generators (DGs) in direct-current (DC) networks. In the master stage is used the genetic algorithm of Chu & Beasley (GA) for the location of DGs. In the slave stage three different continuous techniques are used: the Continuous genetic algorithm (CGA), the Black Hole optimization method (BH) and the particle swarm optimization (PSO) algorithm, in order to solve the problem of sizing. All of those techniques are combined to find the hybrid method that provides the best results in terms of power losses reduction and processing times. The reduction of the total power losses on the electrical network associated to the transport of energy is used as objective function, by also including a penalty to limit the power injected by the DGs on the grid, and considering all constraints associated to the DC grids. To verify the performance of the different hybrid methods studied, two test systems with 10 and 21 buses are implemented in MATLAB by considering the installation of three distributed generators. To solve the power flow equations, the slave stage uses successive approximations. The results obtained shown that the proposed methodology GA-BH provides the best trade-off between speed and power losses independent of the total power provided by the DGs and the network size. © 2019, Springer Nature Switzerland AG.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075643487&doi=10.1007%2f978-3-030-31019-6_19&partnerID=40&md5=552715280abdfa8f09e4602ff1f9016c
dc.titleHybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks
dcterms.bibliographicCitationMontoya, O.D., Garrido, V.M., Gil-González, W., Grisales-Noreña, L., Power flow analysis in DC grids: Two alternative numerical methods (2019) IEEE Trans. Circuits Syst. II, 1
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J. Energy Storage, 21, pp. 1-8
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electr. Power Syst. Res., 169, pp. 18-23
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., Optimal power dispatch of DGs in DC power grids: A hybrid Gauss-Seidel-Genetic-Algorithm methodology for solving the OPF problem (2018) WSEAS Trans. Power Syst., 13, pp. 335-346
dcterms.bibliographicCitationVelasquez, O., Giraldo, O.M., Arevalo, V.G., Noreña, L.G., Optimal power flow in direct-current power grids via black hole optimization (2019) Adv. Electr. Electron. Eng., 17 (1), pp. 24-32
dcterms.bibliographicCitationWang, P., Zhang, L., Xu, D., Optimal sizing of distributed generations in DC microgrids with lifespan estimated model of batteries (2018) 2018 21St International Conference on Electrical Machines and Systems (ICEMS), pp. 2045-2049. , pp., October
dcterms.bibliographicCitationGrisales Noreña, L.F., Restrepo Cuestas, B.J., Jaramillo Ramirez, F.E., Ubi-cación y dimensionamiento de generación distribuida: Una revisión (2017) Ciencia E Ingeniería Neogranadina, 27 (2), pp. 157-176. , https://revistas.unimilitar.edu.co/index.php/rcin/article/view/2344
dcterms.bibliographicCitationGrisales-Noreña, L.F., Gonzalez Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), p. 1018
dcterms.bibliographicCitationMohamed Imran, A., Kowsalya, M., Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization (2014) Swarm Evol. Comput., 15, pp. 58-65
dcterms.bibliographicCitationMahmoud Pesaran, H.A., Huy, P.D., Ramachandaramurthy, V.K., A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms (2017) Renew. Sustain. Energy Rev., 75, pp. 293-312
dcterms.bibliographicCitationGrisales, L.F., Grajales, A., Montoya, O.D., Hincapié, R.A., Granada, M., Optimal location and sizing of distributed generators using a hybrid methodology and considering different technologies (2015) 2015 IEEE 6Th Latin American Symposium on Circuits Systems (LASCAS), pp. 1-4. , pp., February
dcterms.bibliographicCitationChu, P., Beasley, J., A genetic algorithm for the generalised assignment problem (1997) Comput. Oper. Res., 24 (1), pp. 17-23
dcterms.bibliographicCitationKennedy, J., Eberhart, R., Particle swarm optimization (1995) Proceedings of ICNN 1995-International Conference on Neural Networks, 4, pp. 1942-1948. , vol., pp., November
dcterms.bibliographicCitationBouchekara, H., Optimal power flow using black-hole-based optimization approach (2014) Appl. Soft Comput., 24, pp. 879-888
dcterms.bibliographicCitationMontoya, O.D., Grisales-Norena, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381
dcterms.bibliographicCitationMontoya, O.D., On linear analysis of the power flow equations for DC and AC grids with CPLs (2019) IEEE Trans. Circuits Syst. II, p. 1
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event6th Workshop on Engineering Applications, WEA 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-030-31019-6_19
dc.subject.keywordsDirect-current networks
dc.subject.keywordsDistributed generation
dc.subject.keywordsGenetic algorithm
dc.subject.keywordsMetaheuristic optimization
dc.subject.keywordsOptimal power flow
dc.subject.keywordsParticle swarm optimization
dc.subject.keywordsDC power transmission
dc.subject.keywordsDistributed power generation
dc.subject.keywordsEconomic and social effects
dc.subject.keywordsElectric load flow
dc.subject.keywordsGenetic algorithms
dc.subject.keywordsLocation
dc.subject.keywordsContinuous genetic algorithms
dc.subject.keywordsDirect current
dc.subject.keywordsDistributed generator (DGs)
dc.subject.keywordsDistributed generators
dc.subject.keywordsMeta-heuristic optimizations
dc.subject.keywordsOptimal power flows
dc.subject.keywordsParticle swarm optimization algorithm
dc.subject.keywordsSuccessive approximations
dc.subject.keywordsParticle swarm optimization (PSO)
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate16 October 2019 through 18 October 2019
dc.type.spaConferencia
dc.identifier.orcid55791991200
dc.identifier.orcid57212009687
dc.identifier.orcid56919564100
dc.identifier.orcid22836502400


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.