Mostrar el registro sencillo del ítem
Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation
dc.contributor.editor | Figueroa-Garcia J.C. | |
dc.contributor.editor | Duarte-Gonzalez M. | |
dc.contributor.editor | Jaramillo-Isaza S. | |
dc.contributor.editor | Orjuela-Canon A.D. | |
dc.contributor.editor | Diaz-Gutierrez Y. | |
dc.creator | Amin W.T. | |
dc.creator | Montoya O.D. | |
dc.creator | Grisales-Noreña L.F. | |
dc.date.accessioned | 2020-03-26T16:33:08Z | |
dc.date.available | 2020-03-26T16:33:08Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Communications in Computer and Information Science; Vol. 1052, pp. 552-564 | |
dc.identifier.isbn | 9783030310189 | |
dc.identifier.issn | 18650929 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9175 | |
dc.description.abstract | This paper addresses the voltage collapse analysis in direct-current (DC) power grids via nonlinear optimization approach. The formulation of this problem corresponds to an optimization problem, where the objective function is the maximization of the loadability consumption at all the constant power loads, subject to the conventional power flow balance equations. To solve this nonlinear non-convex optimization problem a large-scale nonlinear optimization package known as General Algebraic Modeling System (GAMS) is employed. Different nonlinear solvers available in GAMS are used to confirm that the optimal solution has been reached. A small 4-node test system is used to illustrate the GAMS implementation. Finally, two test systems with 21 and 33 nodes respectively, are used for simulation purposes in order to confirm both the effectiveness and robustness of the nonlinear model, and the proposed GAMS solution methodology. © 2019, Springer Nature Switzerland AG. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075642857&doi=10.1007%2f978-3-030-31019-6_46&partnerID=40&md5=f8f593d3e5e1016ef067f60414ba465e | |
dc.title | Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation | |
dcterms.bibliographicCitation | Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925 | |
dcterms.bibliographicCitation | Georgilakis, P.S., Hatziargyriou, N.D., Optimal distributed generation placement in power distribution networks: Models, methods, and future research (2013) IEEE Trans. Power Syst., 28 (3), pp. 3420-3428 | |
dcterms.bibliographicCitation | Samper, M.E., Reta, R.A., Regulatory analysis of distributed generation installed by distribution utilities (2015) IEEE Lat. Am. Trans., 13 (3), pp. 665-672 | |
dcterms.bibliographicCitation | Elsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: An overview (2015) Electr. Power Syst. Res., 119, pp. 407-417 | |
dcterms.bibliographicCitation | Planas, E., Andreu, J., Gárate, J.I., Martínez De Alegría, I., Ibarra, E., AC and DC technology in microgrids: A review (2015) Renew. Sustain. Energy Rev., 43, pp. 726-749 | |
dcterms.bibliographicCitation | Montoya, O.D., Grisales-Noreña, L., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: A quadratic convex approximation (2019) IEEE Trans. Circuits Syst. II, 66 (6), pp. 1018-1022 | |
dcterms.bibliographicCitation | Justo, J.J., Mwasilu, F., Lee, J., Jung, J.-W., AC-microgrids versus DC-microgrids with distributed energy resources: A review (2013) Renew. Sustain. Energy Rev., 24, pp. 387-405 | |
dcterms.bibliographicCitation | Nasirian, V., Moayedi, S., Davoudi, A., Lewis, F.L., Distributed cooperative control of DC microgrids (2015) IEEE Trans. Power Electron., 30 (4), pp. 2288-2303 | |
dcterms.bibliographicCitation | Papadimitriou, C., Zountouridou, E., Hatziargyriou, N., Review of hierarchical control in DC microgrids (2015) Electr. Power Syst. Res., 122, pp. 159-167. , http://www.sciencedirect.com/science/article/pii/S0378779615000073 | |
dcterms.bibliographicCitation | Velasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Noreña, L.F., Optimal power flow in direct-current power grids via black hole optimization (2019) AEEE Adv. Electr. Electron. Eng., 17 (1), pp. 24-32. , http://advances.utc.sk/index.php/AEEE/article/view/3069 | |
dcterms.bibliographicCitation | Garcés, A., On the convergence of newton’s method in power flow studies for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5770-5777 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garrido, V.M., Voltage stability margin in DC grids with CPLs: A recursive newton-raphson approximation (2019) IEEE Trans. Circuits Syst. II, pp. 1-1 | |
dcterms.bibliographicCitation | Simpson-Porco, J.W., Dörfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, 62 (8), pp. 811-815 | |
dcterms.bibliographicCitation | Barabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I, 63 (1), pp. 114-121 | |
dcterms.bibliographicCitation | Niazi, G., Lalwani, M., PSO based optimal distributed generation placement and sizing in power distribution networks: A comprehensive review (2017) 2017 International Conference on Computer, Communications and Electronics (Comptelix), pp. 305-311. , pp., July | |
dcterms.bibliographicCitation | Rajalakshmi, J., Durairaj, S., Review on optimal distributed generation placement using particle swarm optimization algorithms (2016) 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), pp. 1-6 | |
dcterms.bibliographicCitation | Grisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (1018), pp. 1-27 | |
dcterms.bibliographicCitation | Montoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model (2019) IEEE Trans. Circuits Syst. II, 66 (4), pp. 642-646 | |
dcterms.bibliographicCitation | Vatani, M., Solati Alkaran, D., Sanjari, M.J., Gharehpetian, G.B., Multiple distributed generation units allocation in distribution network for loss reduction based on a combination of analytical and genetic algorithm methods (2016) IET Gener. Transm. Distrib., 10 (1), pp. 66-72 | |
dcterms.bibliographicCitation | Yuan, H., Li, F., Wei, Y., Zhu, J., Novel linearized power flow and linearized OPF models for active distribution networks with application in distribution LMP (2018) IEEE Trans. Smart Grid, 9 (1), pp. 438-448 | |
dcterms.bibliographicCitation | Salomonsson, D., Soder, L., Sannino, A., Protection of low-voltage DC microgrids (2009) IEEE Trans. Power Del., 24 (3), pp. 1045-1053 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Grisales-Noreña, L.F., Optimal power dispatch of DGs in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem (2018) WSEAS Trans. Power Syst., 13 (33), pp. 335-346. , http://www.wseas.org/multimedia/journals/power/2018/a665116-598.pdf | |
dcterms.bibliographicCitation | Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garces, A., Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electr. Power Syst. Res., 169, pp. 18-23 | |
dcterms.bibliographicCitation | Montoya, O.D., Solving a classical optimization problem using GAMS optimizer package: Economic dispatch problem implementation (2017) Ing. Cienc., 13 (26), pp. 39-63 | |
dcterms.bibliographicCitation | (2019) Gams Free Demo Version, , https://www.gams.com/download/, March | |
dcterms.bibliographicCitation | Nordman, B., Christensen, K., DC local power distribution: Technology, deployment, and pathways to success (2016) IEEE Electrific. Mag., 4 (2), pp. 29-36 | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 6th Workshop on Engineering Applications, WEA 2019 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1007/978-3-030-31019-6_46 | |
dc.subject.keywords | Direct-current networks | |
dc.subject.keywords | General algebraic modeling system | |
dc.subject.keywords | Nonlinear optimization | |
dc.subject.keywords | Optimal power flow analysis | |
dc.subject.keywords | Voltage stability margin | |
dc.subject.keywords | Algebra | |
dc.subject.keywords | Convex optimization | |
dc.subject.keywords | DC power transmission | |
dc.subject.keywords | Electric load flow | |
dc.subject.keywords | Electric power transmission networks | |
dc.subject.keywords | Nonlinear programming | |
dc.subject.keywords | Algebraic modeling | |
dc.subject.keywords | Direct current | |
dc.subject.keywords | Non-linear optimization | |
dc.subject.keywords | Optimal power flows | |
dc.subject.keywords | Voltage stability margins | |
dc.subject.keywords | Voltage measurement | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.relation.conferencedate | 16 October 2019 through 18 October 2019 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 57210212368 | |
dc.identifier.orcid | 56919564100 | |
dc.identifier.orcid | 55791991200 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.