Mostrar el registro sencillo del ítem

dc.contributor.editorFigueroa-Garcia J.C.
dc.contributor.editorDuarte-Gonzalez M.
dc.contributor.editorJaramillo-Isaza S.
dc.contributor.editorOrjuela-Canon A.D.
dc.contributor.editorDiaz-Gutierrez Y.
dc.creatorAmin W.T.
dc.creatorMontoya O.D.
dc.creatorGrisales-Noreña L.F.
dc.date.accessioned2020-03-26T16:33:08Z
dc.date.available2020-03-26T16:33:08Z
dc.date.issued2019
dc.identifier.citationCommunications in Computer and Information Science; Vol. 1052, pp. 552-564
dc.identifier.isbn9783030310189
dc.identifier.issn18650929
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9175
dc.description.abstractThis paper addresses the voltage collapse analysis in direct-current (DC) power grids via nonlinear optimization approach. The formulation of this problem corresponds to an optimization problem, where the objective function is the maximization of the loadability consumption at all the constant power loads, subject to the conventional power flow balance equations. To solve this nonlinear non-convex optimization problem a large-scale nonlinear optimization package known as General Algebraic Modeling System (GAMS) is employed. Different nonlinear solvers available in GAMS are used to confirm that the optimal solution has been reached. A small 4-node test system is used to illustrate the GAMS implementation. Finally, two test systems with 21 and 33 nodes respectively, are used for simulation purposes in order to confirm both the effectiveness and robustness of the nonlinear model, and the proposed GAMS solution methodology. © 2019, Springer Nature Switzerland AG.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075642857&doi=10.1007%2f978-3-030-31019-6_46&partnerID=40&md5=f8f593d3e5e1016ef067f60414ba465e
dc.titleDetermination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationGeorgilakis, P.S., Hatziargyriou, N.D., Optimal distributed generation placement in power distribution networks: Models, methods, and future research (2013) IEEE Trans. Power Syst., 28 (3), pp. 3420-3428
dcterms.bibliographicCitationSamper, M.E., Reta, R.A., Regulatory analysis of distributed generation installed by distribution utilities (2015) IEEE Lat. Am. Trans., 13 (3), pp. 665-672
dcterms.bibliographicCitationElsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: An overview (2015) Electr. Power Syst. Res., 119, pp. 407-417
dcterms.bibliographicCitationPlanas, E., Andreu, J., Gárate, J.I., Martínez De Alegría, I., Ibarra, E., AC and DC technology in microgrids: A review (2015) Renew. Sustain. Energy Rev., 43, pp. 726-749
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: A quadratic convex approximation (2019) IEEE Trans. Circuits Syst. II, 66 (6), pp. 1018-1022
dcterms.bibliographicCitationJusto, J.J., Mwasilu, F., Lee, J., Jung, J.-W., AC-microgrids versus DC-microgrids with distributed energy resources: A review (2013) Renew. Sustain. Energy Rev., 24, pp. 387-405
dcterms.bibliographicCitationNasirian, V., Moayedi, S., Davoudi, A., Lewis, F.L., Distributed cooperative control of DC microgrids (2015) IEEE Trans. Power Electron., 30 (4), pp. 2288-2303
dcterms.bibliographicCitationPapadimitriou, C., Zountouridou, E., Hatziargyriou, N., Review of hierarchical control in DC microgrids (2015) Electr. Power Syst. Res., 122, pp. 159-167. , http://www.sciencedirect.com/science/article/pii/S0378779615000073
dcterms.bibliographicCitationVelasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Noreña, L.F., Optimal power flow in direct-current power grids via black hole optimization (2019) AEEE Adv. Electr. Electron. Eng., 17 (1), pp. 24-32. , http://advances.utc.sk/index.php/AEEE/article/view/3069
dcterms.bibliographicCitationGarcés, A., On the convergence of newton’s method in power flow studies for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5770-5777
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garrido, V.M., Voltage stability margin in DC grids with CPLs: A recursive newton-raphson approximation (2019) IEEE Trans. Circuits Syst. II, pp. 1-1
dcterms.bibliographicCitationSimpson-Porco, J.W., Dörfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, 62 (8), pp. 811-815
dcterms.bibliographicCitationBarabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I, 63 (1), pp. 114-121
dcterms.bibliographicCitationNiazi, G., Lalwani, M., PSO based optimal distributed generation placement and sizing in power distribution networks: A comprehensive review (2017) 2017 International Conference on Computer, Communications and Electronics (Comptelix), pp. 305-311. , pp., July
dcterms.bibliographicCitationRajalakshmi, J., Durairaj, S., Review on optimal distributed generation placement using particle swarm optimization algorithms (2016) 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), pp. 1-6
dcterms.bibliographicCitationGrisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (1018), pp. 1-27
dcterms.bibliographicCitationMontoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model (2019) IEEE Trans. Circuits Syst. II, 66 (4), pp. 642-646
dcterms.bibliographicCitationVatani, M., Solati Alkaran, D., Sanjari, M.J., Gharehpetian, G.B., Multiple distributed generation units allocation in distribution network for loss reduction based on a combination of analytical and genetic algorithm methods (2016) IET Gener. Transm. Distrib., 10 (1), pp. 66-72
dcterms.bibliographicCitationYuan, H., Li, F., Wei, Y., Zhu, J., Novel linearized power flow and linearized OPF models for active distribution networks with application in distribution LMP (2018) IEEE Trans. Smart Grid, 9 (1), pp. 438-448
dcterms.bibliographicCitationSalomonsson, D., Soder, L., Sannino, A., Protection of low-voltage DC microgrids (2009) IEEE Trans. Power Del., 24 (3), pp. 1045-1053
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Grisales-Noreña, L.F., Optimal power dispatch of DGs in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem (2018) WSEAS Trans. Power Syst., 13 (33), pp. 335-346. , http://www.wseas.org/multimedia/journals/power/2018/a665116-598.pdf
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electr. Power Syst. Res., 169, pp. 18-23
dcterms.bibliographicCitationMontoya, O.D., Solving a classical optimization problem using GAMS optimizer package: Economic dispatch problem implementation (2017) Ing. Cienc., 13 (26), pp. 39-63
dcterms.bibliographicCitation(2019) Gams Free Demo Version, , https://www.gams.com/download/, March
dcterms.bibliographicCitationNordman, B., Christensen, K., DC local power distribution: Technology, deployment, and pathways to success (2016) IEEE Electrific. Mag., 4 (2), pp. 29-36
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event6th Workshop on Engineering Applications, WEA 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-030-31019-6_46
dc.subject.keywordsDirect-current networks
dc.subject.keywordsGeneral algebraic modeling system
dc.subject.keywordsNonlinear optimization
dc.subject.keywordsOptimal power flow analysis
dc.subject.keywordsVoltage stability margin
dc.subject.keywordsAlgebra
dc.subject.keywordsConvex optimization
dc.subject.keywordsDC power transmission
dc.subject.keywordsElectric load flow
dc.subject.keywordsElectric power transmission networks
dc.subject.keywordsNonlinear programming
dc.subject.keywordsAlgebraic modeling
dc.subject.keywordsDirect current
dc.subject.keywordsNon-linear optimization
dc.subject.keywordsOptimal power flows
dc.subject.keywordsVoltage stability margins
dc.subject.keywordsVoltage measurement
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate16 October 2019 through 18 October 2019
dc.type.spaConferencia
dc.identifier.orcid57210212368
dc.identifier.orcid56919564100
dc.identifier.orcid55791991200


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.