Mostrar el registro sencillo del ítem
Analysis of Power Losses in Electric Distribution System Using a MATLAB-Based Graphical User Interface (GUI)
dc.contributor.editor | Figueroa-Garcia J.C. | |
dc.contributor.editor | Duarte-Gonzalez M. | |
dc.contributor.editor | Jaramillo-Isaza S. | |
dc.contributor.editor | Orjuela-Canon A.D. | |
dc.contributor.editor | Diaz-Gutierrez Y. | |
dc.creator | Rojas L.A. | |
dc.creator | Montoya O.D. | |
dc.creator | Campillo Jiménez, Javier Eduardo | |
dc.date.accessioned | 2020-03-26T16:33:07Z | |
dc.date.available | 2020-03-26T16:33:07Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Communications in Computer and Information Science; Vol. 1052, pp. 565-576 | |
dc.identifier.isbn | 9783030310189 | |
dc.identifier.issn | 18650929 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9173 | |
dc.description.abstract | This paper describes a graphical user interface (GUI) developed in MATLAB that provides a user-friendly environment for analyzing the power loss behavior in distribution networks with radial configurations. This GUI allows power systems analysts an easier understanding of the effect of the power dissipation in conductors. The implementation of this GUI implements three radial test feeders using 10, 33 and 69 nodes. As power flow methodology, the successive approximation power flow method was employed. The proposed GUI interface allows identifying the power loss performance in the distribution networks by including a distributed generator (DG) into the grid, operating with unity power factor. This DG is connected to each node to determine which connection provides with the optimal power loss minimization. Numerical results supported by the graphical analysis validate the applicability and importance of user-friendly GUI interfaces for analyzing power systems. © 2019, Springer Nature Switzerland AG. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075663771&doi=10.1007%2f978-3-030-31019-6_47&partnerID=40&md5=c6cff1df8b2e69a872589897b50d9678 | |
dc.title | Analysis of Power Losses in Electric Distribution System Using a MATLAB-Based Graphical User Interface (GUI) | |
dcterms.bibliographicCitation | Osman, T., Mohammad, S., Power distribution asset management (2006) 2006 IEEE Power Engineering Society General Meeting, pp. 7-14. , https://doi.org/10.1109/PES.2006.1709234 | |
dcterms.bibliographicCitation | Renani, Y.K., Ehsan, M., Shahidehpour, M., Optimal transactive market operations with distribution system operators (2018) IEEE Trans. Smart Grid, 9 (6), pp. 6692-6701. , https://doi.org/10.1109/TSG.2017.2718546 | |
dcterms.bibliographicCitation | Ghasemi, H., Aghaei, J., Babamalek Gharehpetian, G., Safdarian, A., MILP model for integrated expansion planning of multi-carrier active energy systems (2019) IET Gener. Transm. Distrib., 13 (7), pp. 1177-1189. , https://doi.org/10.1049/iet-gtd.2018.6328 | |
dcterms.bibliographicCitation | Baydar, B., Gozde, H., Taplamacioglu, M.C., Kucuk, A.O., Resilient optimal power flow with evolutionary computation methods: Short survey (2019) Power Systems Resilience. PS, pp. 163-189. , https://doi.org/10.1007/978-3-319-94442-57, Mah-davi Tabatabaei, N., Najafi Ravadanegh, S., Bizon, N. (eds.), pp., Springer, Cham | |
dcterms.bibliographicCitation | Koziel, S., Landeros Rojas, A., Moskwa, S., Power loss reduction through distribution network reconfiguration using feasibility-preserving simulated annealing (2018) 2018 19Th International Scientific Conference on Electric Power Engineering (EPE), pp. 1-5. , https://doi.org/10.1109/EPE.2018.8396016, pp | |
dcterms.bibliographicCitation | Zhangab, W., Malekic, A., Rosendjingqingliu, M.A., Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage (2018) Energy, 163, pp. 191-207. , https://doi.org/10.1016/j.energy.2018.08.112 | |
dcterms.bibliographicCitation | Zhang, X., Shahidehpour, M., Alabdulwahab, A., Abusorrah, A., Optimal expansion planning of energy hub with multiple energy infrastructures (2015) IEEE Trans. Smart Grid, 6 (5), pp. 2302-2311. , https://doi.org/10.1109/TSG.2015.2390640 | |
dcterms.bibliographicCitation | Novajan, S., Jalali, M., Zare, K., An MINLP approach for optimal DG unit’s allocation in radial/mesh distribution systems take into account voltage stability index (2015) Iran. J. Sci. Technol., 39 (2), pp. 155-165. , https://doi.org/10.22099/IJSTE.2015.3488 | |
dcterms.bibliographicCitation | Frances, J., Perez-Molina, M., Bleda, S., Fernandez, E., Neipp, C., Belendez, A., Educational software for interference and optical diffraction analysis in Fresnel and Fraunhofer regions based on MATLAB GUIs and the FDTD method (2012) IEEE Trans. Educ., 55 (1), pp. 118-125. , https://doi.org/10.1109/TE.2011.2150750 | |
dcterms.bibliographicCitation | Siddiqui, A.S., Rahman, F., Optimal capacitor placement to reduce losses in distribution system (2012) WSEAS Trans. Power Syst., 7 (1), pp. 12-17 | |
dcterms.bibliographicCitation | Askarzadeh, A., Capacitor placement in distribution systems for power loss reduction and voltage improvement: A new methodology (2016) IET Gener. Transm. Distrib., 10 (14), pp. 3631-3638. , https://doi.org/10.1049/iet-gtd.2016.0419 | |
dcterms.bibliographicCitation | Sultana, S., Roy, P.K., Krill herd algorithm for optimal location of distributed generator in radial distribution system (2016) Appl. Soft Comput., 40, pp. 391-404. , https://doi.org/10.1016/j.asoc.2015.11.036 | |
dcterms.bibliographicCitation | Garces, A., A linear three-phase load flow for power distribution systems (2016) IEEE Trans. Power Syst., 31 (1), pp. 827-828. , https://doi.org/10.1109/TPWRS.2015.2394296 | |
dcterms.bibliographicCitation | Samal, P., Ganguly, S., A modified forward backward sweep load flow algorithm for unbalanced radial distribution systems (2015) IEEE Power Energy Society General Meeting, pp. 1-5. , https://doi.org/10.1109/PESGM.2015.7286413, pp., 2015 | |
dcterms.bibliographicCitation | Faisal, M., Al Hosani, S.M.H., Mohamed, H.H., Z.: A novel approach to solve power flow for islanded microgrids using modified newton Raphson with droop control of DG (2016) IEEE Trans. Sustain. Energy, 7 (2), pp. 493-503. , https://doi.org/10.1109/TSTE.2015.2502482 | |
dcterms.bibliographicCitation | Montoya, O.D., Grisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Garces, A., Linear Power Flow Formulation for Low-Voltage DC Power Grids | |
dcterms.bibliographicCitation | Garces, A., A quadratic approximation for the optimal power flow in power distribution systems (2016) Electr. Power Syst. Res., 130, pp. 222-229. , https://doi.org/10.1016/j.epsr.2015.09.006 | |
dcterms.bibliographicCitation | Montoya, O.D., Garrido, V.M., Gil-González, W., Grisales-Noreña, L., Power flow analysis in DC grids: Two alternative numerical methods (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1-5. , https://doi.org/10.1109/TCSII.2019.2891640, pp | |
dcterms.bibliographicCitation | Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153. , https://doi.org/10.1016/j.epsr.2017.05.031 | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 6th Workshop on Engineering Applications, WEA 2019 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1007/978-3-030-31019-6_47 | |
dc.subject.keywords | Distributed generators | |
dc.subject.keywords | Distribution systems | |
dc.subject.keywords | Graphical interface | |
dc.subject.keywords | Radial power flow | |
dc.subject.keywords | Successive approximations | |
dc.subject.keywords | Approximation theory | |
dc.subject.keywords | Distributed power generation | |
dc.subject.keywords | Electric load flow | |
dc.subject.keywords | Electric losses | |
dc.subject.keywords | Distributed generators | |
dc.subject.keywords | Distribution systems | |
dc.subject.keywords | Graphical interface | |
dc.subject.keywords | Power flows | |
dc.subject.keywords | Successive approximations | |
dc.subject.keywords | Graphical user interfaces | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.relation.conferencedate | 16 October 2019 through 18 October 2019 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 50361825100 | |
dc.identifier.orcid | 56919564100 | |
dc.identifier.orcid | 55609096600 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.