Mostrar el registro sencillo del ítem

dc.contributor.editorBodermann B.
dc.contributor.editorFrenner K.
dc.creatorVargas R.
dc.creatorMarrugo A.G.
dc.creatorPineda J.
dc.creatorRomero L.A.
dc.date.accessioned2020-03-26T16:33:07Z
dc.date.available2020-03-26T16:33:07Z
dc.date.issued2019
dc.identifier.citationProceedings of SPIE - The International Society for Optical Engineering; Vol. 11057
dc.identifier.isbn9781510627932
dc.identifier.issn0277786X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9171
dc.description.abstractFringe Projection Profilometry (FPP) is a widely used technique for optical three-dimensional (3D) shape measurement. Among the existing 3D shape measurement techniques, FPP provides a whole-field 3D reconstruction of objects in a non-contact manner, with high resolution, and fast data processing. The key to accurate 3D shape measurement is the proper calibration of the measurement system. Currently, most calibration procedures in FPP rely on phase-coordinate mapping (PCM) or back-projection stereo-vision (SV) methods. The PCM technique consists in mapping experimental metric XYZ coordinates to recovered phase values by fitting a predetermined function. However, it requires accurately placing 2D or 3D targets at different distances and orientations. Conversely, in the SV method, the projector is regarded as an inverse camera, and the system is modeled using triangulation principles. Therefore, the calibration process can be carried out using 2D targets placed in arbitrary positions and orientations, resulting in a more flexible procedure. In this work, we propose a hybrid calibration procedure that combines SV and PCM methods. The procedure is highly flexible, robust to lens distortions, and has a simple relationship between phase and coordinates. Experimental results show that the proposed method has advantages over the conventional SV model since it needs fewer acquired images for the reconstruction process, and due to its low computational complexity the reconstruction time decreases significantly. © 2019 SPIE.eng
dc.description.sponsorshipUniversidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS 538871552485
dc.description.sponsorshipThe Society of Photo-Optical Instrumentation Engineers (SPIE)
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSPIE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072571081&doi=10.1117%2f12.2527607&partnerID=40&md5=b56098f8e33661496c853dc7e3cd7408
dc.sourceScopus2-s2.0-85072571081
dc.titleA flexible and simplified calibration procedure for fringe projection profilometry
dcterms.bibliographicCitationMarrugo, A.G., Pineda, J., Romero, L.A., Vargas, R., Meneses, J., Fourier transform profilometry in labview (2018) Digital Systems, , IntechOpen
dcterms.bibliographicCitationGorthi, S.S., Rastogi, P., Fringe projection techniques: Whither we are? (2010) Optics and Lasers in Engi-Neering, 48 (2), pp. 133-140
dcterms.bibliographicCitationCai, Z., Liu, X., Li, A., Tang, Q., Peng, X., Gao, B.Z., Phase-3d mapping method developed from back-projection stereovision model for fringe projection profilometry (2017) Optics Express, 25 (2), pp. 1262-1277
dcterms.bibliographicCitationVargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: A comparative study (2018) Opt. Pura Apl., 51 (3)
dcterms.bibliographicCitationVo, M., Wang, Z., Hoang, T., Nguyen, D., Flexible calibration technique for fringe-projection-based three-dimensional imaging (2010) Optics Letters, 35 (19), pp. 3192-3194
dcterms.bibliographicCitationHuang, L., Chua, P.S., Asundi, A., Least-squares calibration method for fringe projection profilometry considering camera lens distortion (2010) Applied Optics, 49 (9), pp. 1539-1548
dcterms.bibliographicCitationZhang, S., Huang, P.S., Novel method for structured light system calibration (2006) Optical Engineering, 45 (8), p. 083601
dcterms.bibliographicCitationVargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Evaluating the inuence of camera and projector lens distortion in 3d reconstruction quality for fringe projection profilometry (2018) Imaging and Applied Optics 2018, , 3M3G.5, OSA, Washington, D.C
dcterms.bibliographicCitationPineda, J., Vargas, R., Romero, L.A., Meneses, J., Marrugo, A.G., Fringe quality map for fringe projection profilometry in LabVIEW (2018) Opt. Pura Apl., 51 (4), pp. 503021-503028
dcterms.bibliographicCitationLi, Z., Shi, Y., Wang, C., Wang, Y., Accurate calibration method for a structured light system (2008) Optical Engineering, 47 (5), p. 053604
dcterms.bibliographicCitationLuo, H., Xu, J., Binh, N.H., Liu, S., Zhang, C., Chen, K., A simple calibration procedure for structured light system (2014) Optics and Lasers in Engineering, 57, pp. 6-12
dcterms.bibliographicCitationLi, K., Bu, J., Zhang, D., Lens distortion elimination for improving measurement accuracy of fringe projection profilometry (2016) Optics and Lasers in Engineering, 85, pp. 53-64
dcterms.bibliographicCitationBouguet, J.-Y., (2008) Camera Calibration Toolbox for Matlab (2008), , http://www.vision.caltech.edu/bouguetj/calibdoc1080
dcterms.bibliographicCitationLagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E., Convergence properties of the nelder-mead simplex method in low dimensions (1998) SIAM Journal on Optimization, 9 (1), pp. 112-147
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.eventModeling Aspects in Optical Metrology VII 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1117/12.2527607
dc.subject.keywords3D shape measurement
dc.subject.keywordsCalibration
dc.subject.keywordsFringe projection profilometry
dc.subject.keywordsCalibration
dc.subject.keywordsData handling
dc.subject.keywordsInverse problems
dc.subject.keywordsMapping
dc.subject.keywordsProfilometry
dc.subject.keywordsStereo image processing
dc.subject.keywordsStereo vision
dc.subject.keywords3-d shape measurement
dc.subject.keywordsCalibration procedure
dc.subject.keywordsFringe projection profilometry
dc.subject.keywordsLow computational complexity
dc.subject.keywordsReconstruction process
dc.subject.keywordsSimplified calibrations
dc.subject.keywordsThree dimensional (3 D) shape measurement
dc.subject.keywordsTriangulation principles
dc.subject.keywordsImage reconstruction
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work has been partly funded by Colciencias (Fondo Nacional de Financiamiento para la Ciencia, la Tec-nología y la Innovación Francisco Joséde Caldas) project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. J. Pineda and R. Vargas thank Universidad Tecnológica de Bolívar for a post-graduate scholarship.
dc.relation.conferencedate24 June 2019 through 26 June 2019
dc.type.spaConferencia
dc.identifier.orcid57117284600
dc.identifier.orcid24329839300
dc.identifier.orcid57192270016
dc.identifier.orcid36142156300


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.