Mostrar el registro sencillo del ítem
A flexible and simplified calibration procedure for fringe projection profilometry
dc.contributor.editor | Bodermann B. | |
dc.contributor.editor | Frenner K. | |
dc.creator | Vargas R. | |
dc.creator | Marrugo A.G. | |
dc.creator | Pineda J. | |
dc.creator | Romero L.A. | |
dc.date.accessioned | 2020-03-26T16:33:07Z | |
dc.date.available | 2020-03-26T16:33:07Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11057 | |
dc.identifier.isbn | 9781510627932 | |
dc.identifier.issn | 0277786X | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9171 | |
dc.description.abstract | Fringe Projection Profilometry (FPP) is a widely used technique for optical three-dimensional (3D) shape measurement. Among the existing 3D shape measurement techniques, FPP provides a whole-field 3D reconstruction of objects in a non-contact manner, with high resolution, and fast data processing. The key to accurate 3D shape measurement is the proper calibration of the measurement system. Currently, most calibration procedures in FPP rely on phase-coordinate mapping (PCM) or back-projection stereo-vision (SV) methods. The PCM technique consists in mapping experimental metric XYZ coordinates to recovered phase values by fitting a predetermined function. However, it requires accurately placing 2D or 3D targets at different distances and orientations. Conversely, in the SV method, the projector is regarded as an inverse camera, and the system is modeled using triangulation principles. Therefore, the calibration process can be carried out using 2D targets placed in arbitrary positions and orientations, resulting in a more flexible procedure. In this work, we propose a hybrid calibration procedure that combines SV and PCM methods. The procedure is highly flexible, robust to lens distortions, and has a simple relationship between phase and coordinates. Experimental results show that the proposed method has advantages over the conventional SV model since it needs fewer acquired images for the reconstruction process, and due to its low computational complexity the reconstruction time decreases significantly. © 2019 SPIE. | eng |
dc.description.sponsorship | Universidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS 538871552485 | |
dc.description.sponsorship | The Society of Photo-Optical Instrumentation Engineers (SPIE) | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | SPIE | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072571081&doi=10.1117%2f12.2527607&partnerID=40&md5=b56098f8e33661496c853dc7e3cd7408 | |
dc.source | Scopus2-s2.0-85072571081 | |
dc.title | A flexible and simplified calibration procedure for fringe projection profilometry | |
dcterms.bibliographicCitation | Marrugo, A.G., Pineda, J., Romero, L.A., Vargas, R., Meneses, J., Fourier transform profilometry in labview (2018) Digital Systems, , IntechOpen | |
dcterms.bibliographicCitation | Gorthi, S.S., Rastogi, P., Fringe projection techniques: Whither we are? (2010) Optics and Lasers in Engi-Neering, 48 (2), pp. 133-140 | |
dcterms.bibliographicCitation | Cai, Z., Liu, X., Li, A., Tang, Q., Peng, X., Gao, B.Z., Phase-3d mapping method developed from back-projection stereovision model for fringe projection profilometry (2017) Optics Express, 25 (2), pp. 1262-1277 | |
dcterms.bibliographicCitation | Vargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: A comparative study (2018) Opt. Pura Apl., 51 (3) | |
dcterms.bibliographicCitation | Vo, M., Wang, Z., Hoang, T., Nguyen, D., Flexible calibration technique for fringe-projection-based three-dimensional imaging (2010) Optics Letters, 35 (19), pp. 3192-3194 | |
dcterms.bibliographicCitation | Huang, L., Chua, P.S., Asundi, A., Least-squares calibration method for fringe projection profilometry considering camera lens distortion (2010) Applied Optics, 49 (9), pp. 1539-1548 | |
dcterms.bibliographicCitation | Zhang, S., Huang, P.S., Novel method for structured light system calibration (2006) Optical Engineering, 45 (8), p. 083601 | |
dcterms.bibliographicCitation | Vargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Evaluating the inuence of camera and projector lens distortion in 3d reconstruction quality for fringe projection profilometry (2018) Imaging and Applied Optics 2018, , 3M3G.5, OSA, Washington, D.C | |
dcterms.bibliographicCitation | Pineda, J., Vargas, R., Romero, L.A., Meneses, J., Marrugo, A.G., Fringe quality map for fringe projection profilometry in LabVIEW (2018) Opt. Pura Apl., 51 (4), pp. 503021-503028 | |
dcterms.bibliographicCitation | Li, Z., Shi, Y., Wang, C., Wang, Y., Accurate calibration method for a structured light system (2008) Optical Engineering, 47 (5), p. 053604 | |
dcterms.bibliographicCitation | Luo, H., Xu, J., Binh, N.H., Liu, S., Zhang, C., Chen, K., A simple calibration procedure for structured light system (2014) Optics and Lasers in Engineering, 57, pp. 6-12 | |
dcterms.bibliographicCitation | Li, K., Bu, J., Zhang, D., Lens distortion elimination for improving measurement accuracy of fringe projection profilometry (2016) Optics and Lasers in Engineering, 85, pp. 53-64 | |
dcterms.bibliographicCitation | Bouguet, J.-Y., (2008) Camera Calibration Toolbox for Matlab (2008), , http://www.vision.caltech.edu/bouguetj/calibdoc1080 | |
dcterms.bibliographicCitation | Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E., Convergence properties of the nelder-mead simplex method in low dimensions (1998) SIAM Journal on Optimization, 9 (1), pp. 112-147 | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | Modeling Aspects in Optical Metrology VII 2019 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1117/12.2527607 | |
dc.subject.keywords | 3D shape measurement | |
dc.subject.keywords | Calibration | |
dc.subject.keywords | Fringe projection profilometry | |
dc.subject.keywords | Calibration | |
dc.subject.keywords | Data handling | |
dc.subject.keywords | Inverse problems | |
dc.subject.keywords | Mapping | |
dc.subject.keywords | Profilometry | |
dc.subject.keywords | Stereo image processing | |
dc.subject.keywords | Stereo vision | |
dc.subject.keywords | 3-d shape measurement | |
dc.subject.keywords | Calibration procedure | |
dc.subject.keywords | Fringe projection profilometry | |
dc.subject.keywords | Low computational complexity | |
dc.subject.keywords | Reconstruction process | |
dc.subject.keywords | Simplified calibrations | |
dc.subject.keywords | Three dimensional (3 D) shape measurement | |
dc.subject.keywords | Triangulation principles | |
dc.subject.keywords | Image reconstruction | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | This work has been partly funded by Colciencias (Fondo Nacional de Financiamiento para la Ciencia, la Tec-nología y la Innovación Francisco Joséde Caldas) project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. J. Pineda and R. Vargas thank Universidad Tecnológica de Bolívar for a post-graduate scholarship. | |
dc.relation.conferencedate | 24 June 2019 through 26 June 2019 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 57117284600 | |
dc.identifier.orcid | 24329839300 | |
dc.identifier.orcid | 57192270016 | |
dc.identifier.orcid | 36142156300 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.