Mostrar el registro sencillo del ítem

dc.contributor.editorFigueroa-Garcia J.C.
dc.contributor.editorDuarte-Gonzalez M.
dc.contributor.editorJaramillo-Isaza S.
dc.contributor.editorOrjuela-Canon A.D.
dc.contributor.editorDiaz-Gutierrez Y.
dc.creatorDe Leon V.
dc.creatorAlcazar Y.
dc.creatorVilla Ramírez, José Luis
dc.date.accessioned2020-03-26T16:33:07Z
dc.date.available2020-03-26T16:33:07Z
dc.date.issued2019
dc.identifier.citationCommunications in Computer and Information Science; Vol. 1052, pp. 523-533
dc.identifier.isbn9783030310189
dc.identifier.issn18650929
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9170
dc.description.abstractIndustrial Internet of Things has become a reality in many kind of industries. In this paper, We explore the case of high quantity of raw data generated by a machine. In the aforementioned case is not viable store and process the data in a traditional Internet of Things architecture. For this case, We use an architecture based on edge computing and Industrial Internet of Things concepts and apply them to a case of machine monitoring for predictive maintenance. The proof of concept shows the potential benefits in real industrial applications. © 2019, Springer Nature Switzerland AG.eng
dc.description.sponsorshipDepartment of Science, Information Technology and Innovation, Queensland Government, DSITI Ministry of Information and Communications Technology, Iran Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Fondo Nacional de Ciencia Tecnología e Innovación, FONACIT: FP44842-502-2015
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075644036&doi=10.1007%2f978-3-030-31019-6_44&partnerID=40&md5=a3ce01c10e2bb04764c4bb875b31115f
dc.titleUse of Edge Computing for Predictive Maintenance of Industrial Electric Motors
dcterms.bibliographicCitationGregori, F., Papetti, A., Pandolfi, M., Peruzzini, M., Germani, M., Improving a production site from a social point of view: An IoT infrastructure to monitor workers condition (2018) Procedia CIRP, 72, pp. 886-891. , https://doi.org/10.1016/j.procir.2018.03.057.http://www.sciencedirect.com/science/article/pii/S2212827118301598.ISSN2212-8271
dcterms.bibliographicCitation(2016) White Paper of Edge Computing Consortium
dcterms.bibliographicCitationBoyes, H., Hallaq, B., Cunningham, J., Watson, T., The industrial Internet of Things (IIoT): An analysis framework (2018) Comput. Ind., 101, pp. 1-12. , http://www.sciencedirect.com/science/article/pii/S0166361517307285.ISSN0166-3615
dcterms.bibliographicCitationCiverchia, F., Bocchino, S., Salvadori, C., Rossi, E., Maggiani, L., Petracca, M., Industrial Internet of Things monitoring solution for advanced predictive maintenance applications (2017) J. Ind. Inf. Integr., 7, pp. 4-12. , http://www.sciencedirect.com/science/article/pii/S2452414X16300954.ISSN2452-414X
dcterms.bibliographicCitationCao, J., Zhang, Q., Li, Y., Shi, W., Xu, L., Edge computing: Vision and challenges (2016) IEEE Iot J, 3, pp. 637-646
dcterms.bibliographicCitationIndustrial Internet Consortium. Introduction to edge computing in IIoT. An Industrial Internet Consortium White Paper, IIC:WHT:IN24:V1.0:PB:20180618. Edge Computing Task Group
dcterms.bibliographicCitationSchmidt, B., Wang, L., Galar, D., Semantic framework for predictive maintenance in a cloud environment (2017) Procedia CIRP, 62, pp. 583-588. , https://doi.org/10.1016/j.procir.2016.06.047
dcterms.bibliographicCitationTaherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V., Monitoring self-adaptive applications within edge computing frameworks: A state-of-the-art review (2018) J. Syst. Softw., 136, pp. 19-38. , Suppl. C
dcterms.bibliographicCitationFujishima, M., Mori, M., Nishimura, K., Takayama, M., Kato, Y., Development of sensing interface for preventive maintenance of machine tools (2017) Procedia CIRP, 61, pp. 796-799. , http://www.sciencedirect.com/science/article/pii/S2212827116313749, ISSN 2212-8271
dcterms.bibliographicCitationCruz, A.M.E., (2013) ESTUDIO DE UN SISTEMA DE MANTENIMIENTO PREDIC-TIVO BASADO EN ANÁLISIS DE VIBRACIONES IMPLANTADO EN INSTA-LACIONES DE BOMBEO Y GENERACIÓN https://power-mi.com/es/content/power-mi-lanza-manual-de-an
dcterms.bibliographicCitationPease, S.G., Conway, P.P., West, A.A., Hybrid ToF and RSSI real-time semantic tracking with an adaptive industrial internet of things architecture (2017) J. Netw. Comput. Appl., 99, pp. 98-109
dcterms.bibliographicCitationFlores, R., Asiaín, T.I., Diagnóstico de Fallas en Máquinas Eléctricas Rota-torias Utilizando la Técnica de Espectros de Frecuencia de Bandas Laterales (2011) Información Tecnológica, 22 (4), pp. 73-84. , https://doi.org/10.4067/S0718-07642011000400009
dcterms.bibliographicCitationTalbot, C.E., Saavedra, P.N., Valenzuela, M.A., Diagnóstico de la Condición de las Barras de Motores de Inducción (2013) Información tecnológica, 24 (4), pp. 85-94. , https://doi.org/10.4067/S0718-07642013000400010
dcterms.bibliographicCitationLin, S.-W., (2017) Architecture Alignment and Interoperability
dcterms.bibliographicCitationMourtzis, D., Gargallis, A., Zogopoulos, V., Modelling of customer oriented applications in product lifecycle using RAMI 4.0 Procedia Manuf., 28, pp. 31-36. , http://www.sciencedirect.com/science/article/pii/S2351978918313489
dcterms.bibliographicCitationLin, S.W., Industrial internet reference architecture (2015) Technical Report, Industrial Internet Consortium (IIC)
dcterms.bibliographicCitationPackard, H., (2017) Real-Time Analysis and Condition Monitoring with Predictive Maintenance. Transforming Data into Value with HPE Edgeline
dcterms.bibliographicCitationGierej, S., The framework of business model in the context of industrial Internet of Things (2017) Procedia Eng., 182, pp. 206-212. , http://www.sciencedirect.com/science/article/pii/S1877705817313024, ISSN 1877-7058
dcterms.bibliographicCitationShi, W., Cao, J., Zhang, Q., Li, Y., Xu, L., Edge computing: Vision and challenges (2016) IEEE Iot J, 3 (5), pp. 637-646
dcterms.bibliographicCitationBarroso, M., Dolores, M., (2019) Edge Computing Para Iot
dcterms.bibliographicCitationBossio, G., de Angelo, C., García, G., (2006) Técnicas De Mantenimiento Predictivo En Máquinas Eléctricas: Diagnóstico De Fallas En El Rotor De Los Motores De Inducción. Megavatios, pp. 194-208. , pp
dcterms.bibliographicCitationBellini, A., On-field experience with online diagnosis of large induction motors cage failures using MCSA (2002) IEEE Trans. Ind. Appl., 38 (4), pp. 1045-1053. , https://doi.org/10.1109/TIA.2002.800591
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event6th Workshop on Engineering Applications, WEA 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-030-31019-6_44
dc.subject.keywordsEdge computing
dc.subject.keywordsIndustrial internet of things
dc.subject.keywordsPredictive maintenance
dc.subject.keywordsElectric motors
dc.subject.keywordsInternet of things
dc.subject.keywordsMaintenance
dc.subject.keywordsArchitecture-based
dc.subject.keywordsInternet of things architectures
dc.subject.keywordsMachine monitoring
dc.subject.keywordsPotential benefits
dc.subject.keywordsPredictive maintenance
dc.subject.keywordsProof of concept
dc.subject.keywordsEdge computing
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThe authors would like acknowledge the cooperation of all partners within the Centro de Excelencia y Apropiaci?n en Internet de las Cosas (CEA-IoT) project. The authors would also like to thank all the institutions that supported this work: the Colombian Ministry for the Information and Communications Technology (Ministerio de Tecnolog?as de la Informaci?n y las Comunicaciones-MinTIC ) and the Colombian Administrative Department of Science, Technology and Innovation (Departamento Administrativo de Ciencia, Tecnolog?a e Innovaci?n-Colcien-cias) through the Fondo Nacional de Financiamiento para la Ciencia, la Tecnolog?a y la Innovaci?n Francisco Jos? de Caldas (Project ID: FP44842-502-2015).
dc.relation.conferencedate16 October 2019 through 18 October 2019
dc.type.spaConferencia
dc.identifier.orcid57212008502
dc.identifier.orcid57212005233
dc.identifier.orcid55498635300


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.