Mostrar el registro sencillo del ítem

dc.creatorAltamar Mercado, Hernando
dc.creatorPatiño Vanegas, Alberto
dc.creatorMarrugo A.G.
dc.date.accessioned2020-03-26T16:33:06Z
dc.date.available2020-03-26T16:33:06Z
dc.date.issued2019
dc.identifier.citationApplied Optics; Vol. 58, Núm. 5; pp. A101-A111
dc.identifier.issn1559128X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9164
dc.description.abstractWhite light scanning interference (WLSI) microscopes provide an accurate surface topography of engineered surfaces. However, the measurement accuracy is substantially reduced in surfaces with low-reflectivity regions or high roughness, like a surface affected by corrosion. An alternative technique called shape from focus (SFF) takes advantage of the surface texture to recover the 3D surface by using a focus metric through a vertical scan. In this work, we propose a technique called SFF-WLSI, which consists of recovering the 3D surface of an object by applying the Tenegrad Variance (TENV) focus metric to WLSI images. Extensive simulation results show that the proposed technique yields accurate measurements under different surface roughness and surface reflectivity, outperforming the conventional WLSI and the SFF techniques. We validated the simulation results on two real objects with a Mirau-type microscope. The first was a flat lapping specimen with R a 0.05 μm for which we measured an average value of R a 0.055 μm and standard deviation σ 0.008 μm. The second was a metallic sphere with corrosion, which we reconstructed with WLSI versus the proposed SFF-WLSI technique, producing a better 3D reconstruction with less undefined depth values. © 2018 Optical Society of America.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 538871552485 Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 785-2017
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherOSA - The Optical Society
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061456342&doi=10.1364%2fAO.58.00A101&partnerID=40&md5=b4086b44e69abf93da4c508632ad8145
dc.titleRobust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy
dcterms.bibliographicCitationHarding, K., (2013) Handbook of Optical Dimensional Metrology, , CRC Press
dcterms.bibliographicCitationGianto, G., Salzenstein, F., Montgomery, P., Comparison of envelope detection techniques in coherence scanning interferometry (2016) Appl. Opt., 55, pp. 6763-6774
dcterms.bibliographicCitationLarkin, K.G., Efficient nonlinear algorithm for envelope detection in white light interferometry (1996) J. Opt. Soc. Am. A, 13, pp. 832-843
dcterms.bibliographicCitationMontgomery, P., Salzenstein, F., Montaner, D., Serio, B., Pfeiffer, P., Implementation of a fringe visibility based algorithm in coherence scanning interferometry for surface roughness measurement (2013) Proc. SPIE, 8788, p. 87883G
dcterms.bibliographicCitationDresel, T., Häusler, G., Venzke, H., Three-dimensional sensing of rough surfaces by coherence radar (1992) Appl. Opt., 31, pp. 919-925
dcterms.bibliographicCitationGao, F., Leach, R.K., Petzing, J., Coupland, J.M., Surface measurement errors using commercial scanning white light interferometers (2008) Meas. Sci. Technol., 19, p. 015303
dcterms.bibliographicCitationNoguchi, M., Nayar, S.K., Microscopic shape from focus using a projected illumination pattern (1996) Math. Comput. Model., 24, pp. 31-48
dcterms.bibliographicCitationFlorczak, J., Usage of shape from focus method for 3D shape recovery and identification of 3D object position (2014) Int. J. Image Process., 8, pp. 116-124
dcterms.bibliographicCitationHelmli, F., Scherer, S., Adaptive shape from focus with an error estimation in light microscopy (2001) 2nd International Symposium on Image and Signal Processing and Analysis, pp. 188-193
dcterms.bibliographicCitationTian, Y., Hu, H., Cui, H., Yang, S., Qi, J., Xu, Z., Li, L., Three-dimensional surface microtopography recovery from a multifocus image sequence using an omnidirectional modified Laplacian operator with adaptive window size (2017) Appl. Opt., 56, pp. 6300-6310
dcterms.bibliographicCitationPertuz, S., Puig, D., García, M.A., Analysis of focus measure operators for shape-from-focus (2013) Pattern Recogn, 46, pp. 1415-1432
dcterms.bibliographicCitationXu, X., Wang, Y., Zhang, X., Li, S., Liu, X., Wang, X., Tang, J., A comparison of contrast measurements in passive autofocus systems for low contrast images (2014) Multimedia Tools Appl, 69, pp. 139-156
dcterms.bibliographicCitationLee, I., Mahmood, M.T., Shim, S.O., Lee, S.A., Choi, T.S., Depth estimation based on blur measurement for three dimensional camera (2013) IEEE International Conference on Consumer Electronics, pp. 262-263
dcterms.bibliographicCitationFan, T., Yu, H., A novel shape from focus method based on 3D steerable filters for improved performance on treating textureless region (2018) Opt. Commun., 410, pp. 254-261
dcterms.bibliographicCitationLiżewski, K., Tomczewski, S., Kozacki, T., Kostencka, J., High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module (2014) Appl. Opt., 53, pp. 2446-2454
dcterms.bibliographicCitationFilipinas, J.L.D.C., Almoro, P.F., Vibration detection using focus analysis of interferograms (2012) Appl. Opt., 51, pp. 1431-1435
dcterms.bibliographicCitationLim, Y.-T., Park, J.-H., Kwon, K.-C., Kim, N., Analysis on enhanced depth of field for integral imaging microscope (2012) Opt. Express, 20, pp. 23480-23488
dcterms.bibliographicCitationSobel, G., Feldman, I., A 3 × 3 isotropic gradient operator for image processing (1968) Stanford Artificial Intelligence Project (SAIL)
dcterms.bibliographicCitationVo, Q., Fang, F., Zhang, X., Gao, H., Surface recovery algorithm in white light interferometry based on combined white light phase shifting and fast Fourier transform algorithms (2017) Appl. Opt., 56, pp. 8174-8185
dcterms.bibliographicCitationAusloos, M., Berman, D., A multivariate weierstrass-mandelbrot function (1985) Proc. R. Soc. Lond. A, 400, pp. 331-350
dcterms.bibliographicCitationYan, W., Komvopoulos, K., Contact analysis of elastic-plastic fractal surfaces (1998) J. Appl. Phys., 84, pp. 3617-3624
dcterms.bibliographicCitationRagheb, H., Hancock, E.R., Rough surface analysis using Kirchhoff theory (2003) British Machine Vision Conference, pp. 20.1–20.10. , British Machine Vision Association
dcterms.bibliographicCitationChoi, N., Harvey, J.E., Image degradation due to surface scatter in the presence of aberrations (2012) Appl. Opt., 51, pp. 535-546
dcterms.bibliographicCitationMalacara, D., (2007) Optical Shop Testing, 59. , Wiley
dcterms.bibliographicCitationKino, G.S., Corle, T.R., (1996) Confocal Scanning Optical Microscopy and Related Imaging Systems, , Academic
dcterms.bibliographicCitationSubbarao, M., Focusing techniques (1993) Opt. Eng., 32, pp. 2824-2836
dcterms.bibliographicCitationPentland, A.P., A new sense for depth of field (1987) IEEE Trans. Pattern Anal. Mach. Intel., PAMI-9, pp. 523-531
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1364/AO.58.00A101
dc.subject.keywordsCorrosion
dc.subject.keywordsRecovery
dc.subject.keywordsReflection
dc.subject.keywordsTextures
dc.subject.keywords3D reconstruction
dc.subject.keywordsAccurate measurement
dc.subject.keywordsEngineered surfaces
dc.subject.keywordsExtensive simulations
dc.subject.keywordsInterference microscopy
dc.subject.keywordsMeasurement accuracy
dc.subject.keywordsStandard deviation
dc.subject.keywordsSurface reflectivity
dc.subject.keywordsSurface roughness
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesDepartamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) (538871552485, 785-2017). Parts of this work were presented at the Imaging and Applied Optics Congress 2018, Orlando, Florida, 2018, paper JTu4A.19.
dc.type.spaArtículo
dc.identifier.orcid57203321995
dc.identifier.orcid57190688459
dc.identifier.orcid24329839300


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.