Mostrar el registro sencillo del ítem

dc.contributor.editorGruca A.
dc.contributor.editorDeorowicz S.
dc.contributor.editorHarezlak K.
dc.contributor.editorPiotrowska A.
dc.contributor.editorCzachorski T.
dc.creatorPiela M.
dc.creatorKotas, Marian
dc.creatorOrtiz S.H.C.
dc.date.accessioned2020-03-26T16:33:06Z
dc.date.available2020-03-26T16:33:06Z
dc.date.issued2020
dc.identifier.citationAdvances in Intelligent Systems and Computing; Vol. 1061, pp. 34-43
dc.identifier.isbn9783030319632
dc.identifier.issn21945357
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9163
dc.description.abstractWe propose the new application of the spatio-temporal filtering (STF) method, which is a detection of visual evoked potentials applied to brain-computer interfaces (BCI). STF aims in creating a new, enhanced channel basing on the current and the neighbouring samples from all the input channels. The new channel of the better quality facilitates quick detection of visual evoked potential in the EEG recording by reducing number of averaging operations. The BCI experiments include precise information on the times the specific events took place. This feature allowed us to design very accurately the learning step which is based on generalized eigendecomposition and aims in determining the spatio-temporal filter weights. STF based algorithm allows to achieve good results for enhancement and detection of visual evoked potentials applied for brain-computer interfaces. Advantageous classification accuracies obtained with the use of combined spatial and temporal approach suggest the method can contribute to improvement of the existing solutions and stimulate development of more accurate and faster EEG based interfaces between machines and humans. © 2020, Springer Nature Switzerland AG.eng
dc.description.sponsorshipMinisterstwo Nauki i Szkolnictwa Wyższego, MNiSW: BKM-RAu-3/2018
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075905215&doi=10.1007%2f978-3-030-31964-9_4&partnerID=40&md5=9c60e2a3b0cb717d0df3e7345b03dfad
dc.titleSpatio-Temporal Filtering for Evoked Potentials Detection
dcterms.bibliographicCitationAkram, F., Han, M., Kim, T., An efficient word typing P300-BCI system using amodified T9 interface and random forest classifier (2015) Comput. Biol. Med., 56, pp. 30-36
dcterms.bibliographicCitationBlankertz, B., Müller, K., Curio, G., Vaughan, T., Schalk, G., Wolpaw, J., Schlögl, A., Birbaumer, N., The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials (2004) IEEE Trans. Biomed. Eng., 51 (6), pp. 1044-1051
dcterms.bibliographicCitationFarwell, L.A., Donchin, E., Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials (1988) Electroencephalogr. Clin. Neurophysiol., 70, pp. 510-523
dcterms.bibliographicCitationHoffmann, U., Vesin, J., Ebrahimi, T., Diserens, K., An efficient P300-based brain-computer interface for disabled subjects (2008) J. Neurosci. Meth., 167, pp. 115-125
dcterms.bibliographicCitationKotas, M., Blaszczyk, J., Moron, T., Spatio-temporal FIR filter for fetal ECG extraction (2015) Int. J. Inf. Electron. Eng. IACSIT Press, 5 (1), pp. 10-14
dcterms.bibliographicCitationKotas, M., Jezewski, J., Horoba, K., Matonia, A., Application of spatio-temporal filtering to fetal electrocardiogram enhancement (2011) Comput. Meth. Prog. Biomed., 104, pp. 1-9
dcterms.bibliographicCitationKotas, M., Pander, T., Leski, J., Averaging of nonlinearly aligned signal cycles for noise suppression (2015) Biomed. Signal Process. Control, 21, pp. 157-168
dcterms.bibliographicCitationKrusienski, D., Sellers, E., Cabestaing, F., Bayoudh, S., McFarland, D., Vaughan, T., Wolpaw, J., A comparison of classification techniques for the P300 speller (2006) J. Neural Eng., 3 (4), pp. 299-305
dcterms.bibliographicCitationKrusienski, D., Sellers, E., McFarland, D., Vaughan, T., Wolpaw, J., Toward enhanced P300 speller performance (2008) J. Neurosci. Meth., 167 (1), pp. 15-21
dcterms.bibliographicCitationLeski, J., Robust weighted averaging of biomedical signals (2002) IEEE Trans. Biomed. Eng., 49 (8), pp. 796-804
dcterms.bibliographicCitationLotte, F., Bougrain, A., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., Yger, F., A review of classification algorithms for EEG-based brain-computer interfaces: A 10-year update (2018) J. Neural Eng., 15 (3)
dcterms.bibliographicCitationLotte, F., Congedo, M., Lecuyer, A., Arnaldi, Q.B., A review of classification algorithms for EEG-based brain-computer interfaces (2007) J. Neural Eng., 4, pp. R1-R13
dcterms.bibliographicCitationMomot, A., Momot, M., Leski, J., Bayesian and empirical bayesian approach to weighted averaging of ECG signal (2007) Tech. Sci., 55 (4)
dcterms.bibliographicCitationWaytowich, N., Lawhern, V., Bohannon, A., Ball, K., Lance, B., Spectraltransfer learning using information geometry for a user-independent brain-computer interface (2016) Front. Neurosci., 10 (430)
dcterms.bibliographicCitationZhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., Cichocki, A., Sparse Bayesian classification of EEG for brain-computer interface (2016) Neural Netw. Learn. Syst., 27 (11), pp. 2256-2267
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event6th International Conference on Man-Machine Interactions, ICMMI 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-030-31964-9_4
dc.subject.keywordsBrain-computer interfaces
dc.subject.keywordsSpatio temporal filtering
dc.subject.keywordsVisual evoked potentials
dc.subject.keywordsElectrophysiology
dc.subject.keywordsClassification accuracy
dc.subject.keywordsGeneralized eigen decomposition
dc.subject.keywordsInput channels
dc.subject.keywordsNew applications
dc.subject.keywordsSpatio temporal filtering
dc.subject.keywordsSpatio-temporal filter
dc.subject.keywordsTemporal approach
dc.subject.keywordsVisual evoked potential
dc.subject.keywordsBrain computer interface
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was partially supported by the Ministry of Science and Higher Education funding for statutory activities of young researchers (BKM-RAu-3/2018).
dc.relation.conferencedate2 October 2019 through 3 October 2019
dc.type.spaConferencia
dc.identifier.orcid57202468264
dc.identifier.orcid55985160800
dc.identifier.orcid57210822856


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.