Mostrar el registro sencillo del ítem

dc.creatorMesa J.A.
dc.creatorEsparragoza I.
dc.creatorMaury H.
dc.date.accessioned2020-03-26T16:33:05Z
dc.date.available2020-03-26T16:33:05Z
dc.date.issued2019
dc.identifier.citationInternational Journal of Precision Engineering and Manufacturing - Green Technology; Vol. 6, Núm. 2; pp. 377-391
dc.identifier.issn22886206
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9158
dc.description.abstractThe purpose of this paper is to perform the analysis of literature review regarding the design of open architecture products (OAP) and their potential benefits within the circular economy (CE) model. The analysis involved studying more than 80 research articles during the last two decades in engineering journals. The articles were gathered through a bibliometric analysis using the most relevant keywords concerning product design, sustainability, OAP, and CE. Main trends, challenges and future scopes of research opportunities and development were identified. The study provides a framework to designers and researchers involved in the design of OAP to enhance their sustainability performance for a CE model, which integrates lifecycle considerations (reuse, remanufacturing, repair, and recycle), resource optimization, and emissions reduction. The findings include the need for design methods focused on the design of OAP to guarantee an effective circularity of resources during the whole lifecycle of products and the need of integrating manufacturing processes and material analysis to design products capable of adapting to the CE model. © 2019, Korean Society for Precision Engineering.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherKorean Society for Precision Engineering
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063869699&doi=10.1007%2fs40684-019-00052-1&partnerID=40&md5=8ee8cc15c4d07ccb4ed6b74528ee85a9
dc.titleTrends and Perspectives of Sustainable Product Design for Open Architecture Products: Facing the Circular Economy Model
dcterms.bibliographicCitationMaxwell, D., van der Vorst, R., Developing sustainable products and services (2003) Journal of Cleaner Production, 11, pp. 883-895
dcterms.bibliographicCitationDornfeld, D.A., Moving towards green and sustainable manufacturing (2014) International Journal of Precision Engineering and Manufacturing-Green Technology, 1 (1), pp. 63-66
dcterms.bibliographicCitationUm, J., Suh, S.-H., Design method for developing a product recovery management system based on life cycle information (2015) International Journal of Precision Engineering and Manufacturing-Green Technology, 2 (2), pp. 173-187
dcterms.bibliographicCitationKulatunga, A.K., Karunatilake, N., Weerasinghe, N., Ihalawatta, R., Sustainable manufacturing based decision support model for product design and development process (2015) Procedia CIRP, 26, pp. 87-92
dcterms.bibliographicCitationHarper, S., Thurston, D., Incorporating environmental impacts in strategic redesign of an engineered system (2008) ASME Journal of Mechanical Design, 130 (3), p. 031101
dcterms.bibliographicCitationByggeth, S., Broman, G., Robert, K.-H., A method for sustainable product development based on a modular system of guiding questions (2007) Journal of Cleaner Production, 15, pp. 1-11
dcterms.bibliographicCitationSakao, T., A QFD centred design methodology for environmentally conscious product design (2007) International Journal of Production Research, 45 (18-19), pp. 4143-4162
dcterms.bibliographicCitationMasui, K., Sakao, T., Kobayashi, M., Inaba, A., Applying quality function deployment to environmentally conscious design (2003) International Journal of Quality and Reliability Management, 20 (1), pp. 90-106
dcterms.bibliographicCitationBovea, M., Wang, B., Redesign methodology for developing environmentally conscious product (2007) International Journal of Production Research, 45 (18), pp. 4057-4072
dcterms.bibliographicCitationLjungberg, L., Materials selection and design for development of sustainable products (2007) Materials and Design, 28, pp. 466-479
dcterms.bibliographicCitationKhan, F., Sadiq, R., Veitch, B., Life cycle iNdex (LInX): a new indexing procedure for process and product design and decision-making (2004) Journal of Cleaner Production, 12, pp. 59-76
dcterms.bibliographicCitationChu, C., Luh, Y., Li, T., Chen, H., Economical green product design based on simplified computer-aided product structure variation (2009) Computers in Industry, 60, pp. 485-500
dcterms.bibliographicCitationVinodh, S., Sustainable product design using CAD: a case study in an Indian rotary switches manufacturing organisation (2010) International Journal of Sustainable Engineering, 3 (3), pp. 181-188
dcterms.bibliographicCitationYounesi, M., Roghanian, E., A framework for sustainable product design: a hybrid fuzzy approach based on quality function deployment for environment (2015) Journal of Cleaner Production, 108, pp. 385-394
dcterms.bibliographicCitationGiudice, F., Balisteri, F., Risitano, G., A concurrent design method based on DFMA-FEA integrated approach (2009) Concurrent Engineering, 17 (3), pp. 183-202
dcterms.bibliographicCitationChang, T., Wang, C., Wang, C., A systematic approach for green design in modular product development (2013) International Journal of Advanced Manufacturing Technology, 68, pp. 2729-2741
dcterms.bibliographicCitationBeng, L.G., Omar, B., Integrating axiomatic design principles into sustainable product development (2014) International Journal of Precision Engineering and Manufacturing-Green Technology, 1 (2), pp. 107-117
dcterms.bibliographicCitationSu, J.C.P., Chu, C.-H., Wang, Y.-T., A decision support system to estimate the carbon emissions and cost of product designs (2012) International Journal of Precision Engineering and Manufacturing, 13 (7), pp. 1037-1045
dcterms.bibliographicCitationMatsumoto, M., Yang, S., Martinsen, K., Kainuma, Y., Trends and research challenges in remanufacturing (2016) International Journal of Precision Engineering And Manufacturing-Green Technology, 3 (1), pp. 129-142
dcterms.bibliographicCitationKoren, Y., Hu, S., Gu, P., Shpitalni, M., Open-architecture products (2013) CIRP Annals-Manufacturing Technology, 62, pp. 719-729
dcterms.bibliographicCitationUmeda, Y., Kondoh, S., Shimomura, Y., Tomiyama, T., Development of design methodology for upgradable product based on funtion-behavior-state modeling (2005) Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 19, pp. 161-182
dcterms.bibliographicCitationGeissdoerfer, M., Savaget, P., Bocken, N.M., Hultink, E.J., The Circular Economy—A new sustainability paradigm? (2017) Journal of Cleaner Production, 143 (1), pp. 757-768
dcterms.bibliographicCitationRamani, K., Ramanujan, D., Bernstein, W.Z., Zhao, F., Sutherland, J., Handwerker, C., Choi, J.-K., Thurston, D., Integrated sustainable life cycle design: A review (2010) Journal of Mechanical Design, 132, pp. 0910041-09100415
dcterms.bibliographicCitationBovea, M., Pérez-Belis, V., A taxonomy of eco-design tools for integrating environmental requirements into the product design process (2012) Journal of Cleaner Production, 20, pp. 61-71
dcterms.bibliographicCitationArnette, N., Brewer, B.L., Choal, T., Design for sustainability (DFS): The intersection of supply chain and environment (2014) Journal of Cleaner Production, 83, pp. 374-390
dcterms.bibliographicCitationBuchert, T., Kaluza, A., Halstenberg, F.A., Lindow, K., Hayka, H., Stark, R., Enabling product development engineer to select and combine methods for sustainable design (2014) Procedia CIRP, 15, pp. 413-418
dcterms.bibliographicCitationBrones, F., Monteiro de Carvalho, M., From 50 to 1: Integrating literature toward a systemic ecodesign model (2015) Journal of Cleaner Production, 96, pp. 44-57
dcterms.bibliographicCitationPigosso, D., McAloone, T., Rozenfeld, H., Characterization of the state of the art and identification of main trends of ecodesign tools and methods: Classifying three decades of research and implementation (2015) Indian Institute of Science. Journal, 94 (4), pp. 405-427
dcterms.bibliographicCitationCeschin, F., Gaziulusoy, I., Evolution of design for sustainability: From product design to design for system innovations and transitions (2016) Design Studies, 47, pp. 118-163
dcterms.bibliographicCitationRossi, M., Germani, M., Zamagni, A., Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies (2016) Journal of Cleaner Production, 12, pp. 361-373
dcterms.bibliographicCitationSchöggl, J.-P., Baumgartner, R.J., Hofer, D., Improving sustainability performance in early phases of product design: A checklist for sustainable product development tested in the automotive industry (2017) Journal of Cleaner Production, 140, pp. 1602-1617
dcterms.bibliographicCitationBenyus, J., (2002) Biomimicry: Invention inspired by nature, , Harper Collins, New York
dcterms.bibliographicCitationBocken, N., de Pauw, I., Bakker, C., van der Grinten, B., Product design and business model strategies for a circular economy (2016) International Journal of Production Management and Engineering, 33, pp. 308-320
dcterms.bibliographicCitationBakker, C., Wang, F., Huisman, J., den Hollander, M., Products that go round: Exploring product life extension through design (2014) Journal of Cleaner Production, 69, pp. 10-16
dcterms.bibliographicCitationChiu, M.-C., Chu, C.-H., Review of sustainable product design from life cycle perspectives (2012) International Journal of Precision Engineering and Manufacturing, 13 (7), pp. 1259-1272
dcterms.bibliographicCitationCharnley, F., Lemon, M., Evans, S., Exploring the process of whole system design (2011) Design Studies, 32, pp. 156-179
dcterms.bibliographicCitationVanegas, P., Peeters, J.R., Cattrysse, D., Tecchio, P., Ardente, F., Mathieux, F., Dewulf, W., Duflou, J.R., Ease of disassembly of products to support circular economy strategies (2017) Resources, Conservation and Recycling, 135, pp. 323-334
dcterms.bibliographicCitationPaterson, D.A., Ijomah, W.L., Windmill, J.F., End-of-life decision tool with emphasis on remanufacturing (2017) Journal of Cleaner production, 148, pp. 653-664
dcterms.bibliographicCitationKim, S., Moon, S.K., Sustainable platform identification for product family design (2017) Journal of Cleaner Production, 143, pp. 567-581
dcterms.bibliographicCitationFavi, C., Germani, M., Luzi, A., Mandolini, M., Marconi, M., A design for EOL approach and metrics to favour closed-loop scenarios for products (2017) International Journal of Sustainable Engineering, 10 (3), pp. 136-146
dcterms.bibliographicCitationYu, S., Yang, Q., Tao, J., Xu, X., Incorporating quality function deployment with modularity for the end-of-life of a product family (2015) Journal of Cleaner Production, 87, pp. 423-430
dcterms.bibliographicCitationWang, X., Chan, H.K., Lee, C.K., Li, D., A hierarchical model for eco-design of consumer electronic products (2015) Technological and economic development of economy, 21 (1), pp. 48-64
dcterms.bibliographicCitationSakundarini, N., Taha, Z., Raja Ghazilla, R.A., Abdul-Rashid, S.H., A methodology for optimizing modular design considering product end of life strategies (2015) International Journal of Precision Engineering and Manufacturing, 16 (11), pp. 2359-2367
dcterms.bibliographicCitationPialot, O., Millet, D., Cor, E., Bisiaux, J., A method helping to define eco-innovative systems based on upgradability (2015) Procedia CIRP, 30, pp. 185-190
dcterms.bibliographicCitationOsorio, J., Romero, D., Betancur, M., Molina, A., Design for sustainable mass-customization: Design guidelines for sustainable mass-customized products (2014) Proceedings of the International ICE Conference on Engineering, Technology and Innovation (ICE)
dcterms.bibliographicCitationChou, J.-R., An ARIZ-based life cycle engineering model for eco-design (2014) Journal of Cleaner Production, 66, pp. 210-223
dcterms.bibliographicCitationMascle, C., Product design for rebirth: Application to aircraft life cycle modelling (2013) Supply Chain Forum: An International Journal, 14 (2), pp. 70-83
dcterms.bibliographicCitationZwolinski, P., Lopez-Ontiveros, M.-A., Brissaud, D., Integrated design for remanufacturable products based on product profiles (2006) Journal of Cleaner Production, 14, pp. 1333-1345
dcterms.bibliographicCitationGu, P., Hashemian, M., Nee, A., Adaptable design (2004) CIRP Annals-Manufacturing Technology, 53 (2), pp. 539-557
dcterms.bibliographicCitationKimura, F., Kato, S., Hata, T., Masuda, T., Product modularization for parts reuse in inverse manufacturing (2001) CIRP Annals-Manufacturing Technology, 50 (1), pp. 89-92
dcterms.bibliographicCitationKoga, T., Aoyama, K., Modular design method for sustainable life-cycle of product family considering future market changes (2008) Proceedings of the ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, , New York, USA
dcterms.bibliographicCitationYang, Q., Yu, S., Jian, D., A modular method of developing an eco-product family considering reusability and recyclability of customer products (2014) Journal of Cleaner Production, 64, pp. 254-265
dcterms.bibliographicCitationWang, W., Tseng, M.M., Design for sustainable manufacturing: Applying modular design methodology to manage product end-of-life strategy (2011) International Journal of Product Lifecycle Management, 5 (2-3), pp. 164-182
dcterms.bibliographicCitationMartinez, M., Xue, D., A modular design approach for modeling and optimiation of adaptable products considering the whole product utilization spans (2017) Journal of Mechanical Engineering Science, 232 (7), pp. 1146-1164. , 1–19
dcterms.bibliographicCitationAmaya, J., Lelah, A., Zwolinski, P., Design for intensified use in product–service systems using lifecycle analysis (2014) Journal of Engineering Design, 25 (7-9), pp. 280-302
dcterms.bibliographicCitationMestre, A., Cooper, T., Circular product design. A multiple loops life cycle design approach for the circular economy (2017) The Design Journal, 20 (sup1), pp. S1620-S1635
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_dcae04bc
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/review
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/s40684-019-00052-1
dc.subject.keywordsCircular economy
dc.subject.keywordsOpen architecture products
dc.subject.keywordsResearch opportunities
dc.subject.keywordsSustainable design
dc.subject.keywordsTrends
dc.subject.keywordsArchitecture
dc.subject.keywordsComputer architecture
dc.subject.keywordsEcodesign
dc.subject.keywordsEmission control
dc.subject.keywordsLife cycle
dc.subject.keywordsSustainable development
dc.subject.keywordsCircular economy
dc.subject.keywordsManufacturing process
dc.subject.keywordsOpen architecture
dc.subject.keywordsResearch opportunities
dc.subject.keywordsResource optimization
dc.subject.keywordsSustainability performance
dc.subject.keywordsSustainable product designs
dc.subject.keywordsTrends
dc.subject.keywordsProduct design
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesAcknowledgements This work was supported by COLCIENCIAS through the Ph.D. National Scholarship Program No 617-2. Contract UN-OJ-2014-24072.
dc.type.spaArtículo de revisión
dc.identifier.orcid56079249600
dc.identifier.orcid6506807401
dc.identifier.orcid55281389200


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.