Mostrar el registro sencillo del ítem

dc.creatorBarrios E.M.
dc.creatorMarrugo A.G.
dc.creatorMillán M.S.
dc.date.accessioned2020-03-26T16:33:05Z
dc.date.available2020-03-26T16:33:05Z
dc.date.issued2019
dc.identifier.citation2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings
dc.identifier.isbn9781728114910
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9157
dc.description.abstractIn the field of ophthalmology, retinal images are essential for the diagnosis of many diseases. These images are acquired with a device called the retinal camera. However, often small dust particles in the sensor produce image artifacts that can be confused with small lesions, such as micro-aneurysms. The digital removal of artifacts can be understood as an inpainting process in which a set of pixels are replaced with a value obtained from the surrounding area. In this paper, we propose a methodology based on the sparse representations and dictionary learning for the removal of artifacts in retinal images. We test our method on real retinal images coming from the clinical setting with actual dust artifacts. We compare our restoration results with a diffusion-based inpainting technique. Encouraging experimental results show that our method can successfully remove the artifacts, while assuring the continuity of the retinal structures, like blood vessels. © 2019 IEEE.eng
dc.description.sponsorshipCCD2018-U005
dc.description.sponsorshipIEEE Colombia Section;IEEE Signal Processing Society Colombia Chapter;Universidad Industrial de Santander
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068035770&doi=10.1109%2fSTSIVA.2019.8730253&partnerID=40&md5=44dee9e1fd305fcd98e966b26cb4f4cb
dc.sourceScopus2-s2.0-85068035770
dc.titleLRemoving Dust Artifacts in Retinal Images via Dictionary Learning and Sparse-Based Inpainting
dcterms.bibliographicCitationAbràmoff, M.D., Garvin, M.K., Sonka, M., Retinal imaging and image analysis (2010) IEEE Reviews in Biomedical Engineering, 3, pp. 169-208
dcterms.bibliographicCitationGuillemot, C., Le Meur, O., Image inpainting: Overview and recent advances (2014) IEEE Signal Processing Magazine, 31 (1), pp. 127-144
dcterms.bibliographicCitationElad, M., From exact to approximate solutions (2010) Sparse and Redundant Representations, pp. 79-109. , Springer
dcterms.bibliographicCitationToic, I., Frossard, P., Dictionary learning: What is the right representation for my signal (2011) IEEE Signal Processing Magazine, 28 (2), pp. 27-38
dcterms.bibliographicCitationOgawa, T., Haseyama, M., Image inpainting based on sparse representations with a perceptual metric (2013) EURASIP Journal on Advances in Signal Processing, 2013 (1), p. 179
dcterms.bibliographicCitationSierra, E., Marrugo, A.G., Millan, M.S., Dust particle artifact detection and removal in retinal images (2017) Opt. Pura Apl., 50, pp. 379-387. , Dec
dcterms.bibliographicCitationBruckstein, A.M., Donoho, D.L., Elad, M., From sparse solutions of systems of equations to sparse modeling of signals and images (2009) SIAM Review, 51 (1), pp. 34-81
dcterms.bibliographicCitationManat, S., Zhang, Z., Matching pursuit in a time-frequency dictionary (1993) IEEE Trans Signal Processing, 12, pp. 3397-3451. , Fig. 8: [From left column to right column] Original image (a, d, )), restored image (b, e, h), and the absolute difference (c, f, i). Other restoration results in RGB color fundus images
dcterms.bibliographicCitationTibshirani, R., Regression shrinkage and selection via the lasso (1996) Journal of the Royal Statistical Society. Series B (Methodological), pp. 267-288
dcterms.bibliographicCitationRubinstein, R., Peleg, T., Elad, M., Analysis k-SVD: A dictionary-learning algorithm for the analysis sparse model (2013) IEEE Transactions on Signal Processing, 61 (3), pp. 661-677
dcterms.bibliographicCitationAharon, M., Elad, M., Bruckstein, A., RMK-SVD: An algorithm for designing overcomplete dictionaries for sparse representation (2006) IEEE Transactions on Signal Processing, 54 (11), pp. 4311-4322
dcterms.bibliographicCitationElad, M., Aharon, M., Image denoising via sparse and redundant representations over learned dictionaries (2006) IEEE Transactions on Image Processing, 15 (12), pp. 3736-3745
dcterms.bibliographicCitationElad, M., Starck, J.-L., Querre, P., Donoho, D.L., Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) (2005) Applied and Computational Harmonic Analysis, 19 (3), pp. 340-358
dcterms.bibliographicCitationShen, B., Hu, W., Zhang, Y., Zhang, Y.-J., Image inpainting via sparse representation (2009) Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, pp. 697-700. , IEEE
dcterms.bibliographicCitationYang, J., Wright, J., Huang, T.S., Ma, Y., Image super-resolution via sparse representation (2010) IEEE Transactions on Image Processing, 19 (11), pp. 2861-2873
dcterms.bibliographicCitationZhang, J., Zhao, D., Gao, W., Group-based sparse representation for image restoration (2014) IEEE Transactions on Image Processing, 23 (8), pp. 3336-3351
dcterms.bibliographicCitationRubinstein, R., Zibulevsky, M., Elad, M., (2009) Learning Sparse Dictionaries for Sparse Signal Approximation, , tech. rep., Computer Science Department, Technion
dcterms.bibliographicCitationTrucco, E., Ruggeri, A., Karnowski, T., Giancardo, L., Chaum, E., Hubschman, J.P., Al-Diri, B., Abramoff, M., Validating retinal fundus image analysis algorithms: Issues and a proposal (2013) Investigative Ophthalmology & Visual Science, 54 (5), pp. 3546-3559
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/STSIVA.2019.8730253
dc.subject.keywordsDictionary Learning
dc.subject.keywordsInpainting
dc.subject.keywordsRetinal image
dc.subject.keywordsSparse representation
dc.subject.keywordsBlood vessels
dc.subject.keywordsDiagnosis
dc.subject.keywordsDust
dc.subject.keywordsOphthalmology
dc.subject.keywordsVision
dc.subject.keywordsClinical settings
dc.subject.keywordsDictionary learning
dc.subject.keywordsInpainting
dc.subject.keywordsInpainting process
dc.subject.keywordsInpainting techniques
dc.subject.keywordsRetinal image
dc.subject.keywordsRetinal structure
dc.subject.keywordsSparse representation
dc.subject.keywordsImage processing
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThe authors acknowledge the financial support of Centre de Cooperació i Desenvolupament at the Univer-sitat Politècnica de Catalunya (project CCD2018-U005). Authors are grateful to J. L. Fuentes from the Miguel Servet University Hospital (Zaragoza, Spain) for providing images, and to E. Sierra for providing the code for inpainting by diffusion for the comparison experiments.
dc.relation.conferencedate24 April 2019 through 26 April 2019
dc.type.spaConferencia
dc.identifier.orcid57209542195
dc.identifier.orcid24329839300
dc.identifier.orcid7201466399


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.