Mostrar el registro sencillo del ítem
Sequential quadratic programming models for solving the OPF problem in DC grids
dc.creator | Montoya O.D. | |
dc.creator | Gil-González W. | |
dc.creator | Garces A. | |
dc.date.accessioned | 2020-03-26T16:33:05Z | |
dc.date.available | 2020-03-26T16:33:05Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Electric Power Systems Research; Vol. 169, pp. 18-23 | |
dc.identifier.issn | 03787796 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9156 | |
dc.description.abstract | In this paper, we address the optimal power flow problem in dc grids (OPF-DC). Our approach is based on sequential quadratic programming which solves the problem associated with non-convexity of the model. We propose two different linearizations and compare them to a non-linear algorithm. The first model is a Newton-based linearization which takes the Jacobian of the power flow as a linearization for the optimization stage, and the second model uses the nodal currents as auxiliary variables to linearize over the inequality constraints. Simulation results in radial and meshed grids demonstrate the efficiency of the proposed methodology and allow finding the same solution given by the exact nonlinear representation of the OPF-DC problem. © 2018 Elsevier B.V. | eng |
dc.description.sponsorship | Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058962996&doi=10.1016%2fj.epsr.2018.12.008&partnerID=40&md5=5d7e0d6890ebfa62d8ba875956c3b1e4 | |
dc.title | Sequential quadratic programming models for solving the OPF problem in DC grids | |
dcterms.bibliographicCitation | Dragicević, T., Lu, X., Vasquez, J.C., Guerrero, J.M., DC microgrids. Part I: A review of control strategies and stabilization techniques (2016) IEEE Trans. Power Electron., 31 (7), pp. 4876-4891 | |
dcterms.bibliographicCitation | Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925 | |
dcterms.bibliographicCitation | Elsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: an overview (2015) Electric Power Syst. Res., 119, pp. 407-417 | |
dcterms.bibliographicCitation | Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381 | |
dcterms.bibliographicCitation | Hamad, A.A., El-Saadany, E.F., Multi-agent supervisory control for optimal economic dispatch in DC microgrids (2016) Sustain. Cities Soc., 27, pp. 129-136 | |
dcterms.bibliographicCitation | Donde, V., Feng, X., Segerqvist, I., Callavik, M., Distributed state estimation of hybrid AC/HVDC grids by network decomposition (2016) IEEE Trans. Smart Grid, 7 (2), pp. 974-981 | |
dcterms.bibliographicCitation | Li, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., p. 1 | |
dcterms.bibliographicCitation | Garces, A., On convergence of newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., p. 1 | |
dcterms.bibliographicCitation | Garces, A., A quadratic approximation for the optimal power flow in power distribution systems (2016) Electric Power Syst. Res., 130, pp. 222-229 | |
dcterms.bibliographicCitation | Montoya, O.D., Garces, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258 | |
dcterms.bibliographicCitation | Li, C., Chaudhary, S.K., Savaghebi, M., Vasquez, J.C., Guerrero, J.M., Power flow analysis for low-voltage ac and dc microgrids considering droop control and virtual impedance (2017) IEEE Trans. Smart Grid, 8 (6), pp. 2754-2764 | |
dcterms.bibliographicCitation | Garces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal hvdc systems considering DC/DC converters (2016) 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217 | |
dcterms.bibliographicCitation | Low, S., Gayme, D., Topcu, U., Convexifying optimal power flow: recent advances in OPF solution methods (2013) 2013 American Control Conference, p. 5245 | |
dcterms.bibliographicCitation | Gan, L., Low, S.H., Optimal power flow in direct current networks (2014) IEEE Trans. Power Syst., 29 (6), pp. 2892-2904 | |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model J. Energy Storage, 21, pp. 1-8. , 2019 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: a quadratic convex approximation (2018) IEEE Trans. Circ. Syst. II, p. 1 | |
dcterms.bibliographicCitation | Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Syst. Res., 151, pp. 149-153 | |
dcterms.bibliographicCitation | Nesterov, Y., Lectures on Convex Optimization, Springer Optimization and Its Applications (2018), https://books.google.com.co/books?id=JSyNtQEACAAJ, Springer International Publishing | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1016/j.epsr.2018.12.008 | |
dc.subject.keywords | Direct current power grids | |
dc.subject.keywords | Linearization via Newton–Raphson method | |
dc.subject.keywords | Optimal power flow problem | |
dc.subject.keywords | Quadratic reformulations | |
dc.subject.keywords | Voltage-current formulation | |
dc.subject.keywords | Acoustic generators | |
dc.subject.keywords | Constraint theory | |
dc.subject.keywords | Electric load flow | |
dc.subject.keywords | Electric power transmission networks | |
dc.subject.keywords | Linearization | |
dc.subject.keywords | Quadratic programming | |
dc.subject.keywords | Direct current power | |
dc.subject.keywords | Optimal power flow problem | |
dc.subject.keywords | Quadratic reformulations | |
dc.subject.keywords | Raphson methods | |
dc.subject.keywords | Voltage current | |
dc.subject.keywords | Problem solving | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | This work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology, and Innovation of Colombia (COLCIENCIAS) , by calling contest 727-2015. | |
dc.type.spa | Artículo | |
dc.identifier.orcid | 56919564100 | |
dc.identifier.orcid | 57191493648 | |
dc.identifier.orcid | 36449223500 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.