Mostrar el registro sencillo del ítem

dc.creatorMontoya O.D.
dc.creatorGil-González W.
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:33:05Z
dc.date.available2020-03-26T16:33:05Z
dc.date.issued2019
dc.identifier.citationElectric Power Systems Research; Vol. 169, pp. 18-23
dc.identifier.issn03787796
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9156
dc.description.abstractIn this paper, we address the optimal power flow problem in dc grids (OPF-DC). Our approach is based on sequential quadratic programming which solves the problem associated with non-convexity of the model. We propose two different linearizations and compare them to a non-linear algorithm. The first model is a Newton-based linearization which takes the Jacobian of the power flow as a linearization for the optimization stage, and the second model uses the nodal currents as auxiliary variables to linearize over the inequality constraints. Simulation results in radial and meshed grids demonstrate the efficiency of the proposed methodology and allow finding the same solution given by the exact nonlinear representation of the OPF-DC problem. © 2018 Elsevier B.V.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85058962996&doi=10.1016%2fj.epsr.2018.12.008&partnerID=40&md5=5d7e0d6890ebfa62d8ba875956c3b1e4
dc.titleSequential quadratic programming models for solving the OPF problem in DC grids
dcterms.bibliographicCitationDragicević, T., Lu, X., Vasquez, J.C., Guerrero, J.M., DC microgrids. Part I: A review of control strategies and stabilization techniques (2016) IEEE Trans. Power Electron., 31 (7), pp. 4876-4891
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationElsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: an overview (2015) Electric Power Syst. Res., 119, pp. 407-417
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381
dcterms.bibliographicCitationHamad, A.A., El-Saadany, E.F., Multi-agent supervisory control for optimal economic dispatch in DC microgrids (2016) Sustain. Cities Soc., 27, pp. 129-136
dcterms.bibliographicCitationDonde, V., Feng, X., Segerqvist, I., Callavik, M., Distributed state estimation of hybrid AC/HVDC grids by network decomposition (2016) IEEE Trans. Smart Grid, 7 (2), pp. 974-981
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., p. 1
dcterms.bibliographicCitationGarces, A., On convergence of newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., p. 1
dcterms.bibliographicCitationGarces, A., A quadratic approximation for the optimal power flow in power distribution systems (2016) Electric Power Syst. Res., 130, pp. 222-229
dcterms.bibliographicCitationMontoya, O.D., Garces, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258
dcterms.bibliographicCitationLi, C., Chaudhary, S.K., Savaghebi, M., Vasquez, J.C., Guerrero, J.M., Power flow analysis for low-voltage ac and dc microgrids considering droop control and virtual impedance (2017) IEEE Trans. Smart Grid, 8 (6), pp. 2754-2764
dcterms.bibliographicCitationGarces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal hvdc systems considering DC/DC converters (2016) 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217
dcterms.bibliographicCitationLow, S., Gayme, D., Topcu, U., Convexifying optimal power flow: recent advances in OPF solution methods (2013) 2013 American Control Conference, p. 5245
dcterms.bibliographicCitationGan, L., Low, S.H., Optimal power flow in direct current networks (2014) IEEE Trans. Power Syst., 29 (6), pp. 2892-2904
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model J. Energy Storage, 21, pp. 1-8. , 2019
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: a quadratic convex approximation (2018) IEEE Trans. Circ. Syst. II, p. 1
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Syst. Res., 151, pp. 149-153
dcterms.bibliographicCitationNesterov, Y., Lectures on Convex Optimization, Springer Optimization and Its Applications (2018), https://books.google.com.co/books?id=JSyNtQEACAAJ, Springer International Publishing
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.epsr.2018.12.008
dc.subject.keywordsDirect current power grids
dc.subject.keywordsLinearization via Newton–Raphson method
dc.subject.keywordsOptimal power flow problem
dc.subject.keywordsQuadratic reformulations
dc.subject.keywordsVoltage-current formulation
dc.subject.keywordsAcoustic generators
dc.subject.keywordsConstraint theory
dc.subject.keywordsElectric load flow
dc.subject.keywordsElectric power transmission networks
dc.subject.keywordsLinearization
dc.subject.keywordsQuadratic programming
dc.subject.keywordsDirect current power
dc.subject.keywordsOptimal power flow problem
dc.subject.keywordsQuadratic reformulations
dc.subject.keywordsRaphson methods
dc.subject.keywordsVoltage current
dc.subject.keywordsProblem solving
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology, and Innovation of Colombia (COLCIENCIAS) , by calling contest 727-2015.
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid36449223500


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.