Mostrar el registro sencillo del ítem

dc.creatorPineda J.
dc.creatorMeza J.
dc.creatorBarrios E.M.
dc.creatorRomero L.A.
dc.creatorMarrugo A.G.
dc.date.accessioned2020-03-26T16:33:05Z
dc.date.available2020-03-26T16:33:05Z
dc.date.issued2019
dc.identifier.citation2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings
dc.identifier.isbn9781728114910
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9155
dc.description.abstractThe problem of phase unwrapping from a noisy and also incomplete wrapped phase map arises in many optics and image processing applications. In this work, we propose a noise-robust approach for processing regional phase dislocations. Our approach combines phase unwrapping and sparse-based inpainting with dictionary learning to recover the continuous phase map. The method is validated both using numerically simulated data with strong additive white Gaussian noise and phase dislocations; and experimental data from fringe projection profilometry. Comparisons with other phase inpainting method referred to as PULSI+INTERP, show the suitability of the proposed method for phase restoration even in extremely noisy phases. The error given by the proposed method on the highest level of noise (RMSE=0.0269 Rad) remains the smallest compared to the error given by PULSI+INTERP for noise-free data (RMSE=0.0332 Rad). © 2019 IEEE.eng
dc.description.sponsorshipUniversidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 538871552485
dc.description.sponsorshipIEEE Colombia Section;IEEE Signal Processing Society Colombia Chapter;Universidad Industrial de Santander
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068049480&doi=10.1109%2fSTSIVA.2019.8730228&partnerID=40&md5=ace3337238ede20ac95bd15a31d715d3
dc.sourceScopus2-s2.0-85068049480
dc.titleNoise-Robust Processing of Phase Dislocations using Combined Unwrapping and Sparse Inpainting with Dictionary Learning
dcterms.bibliographicCitationGorthi, S.S., Rastogi, P., Fringe projection techniques: Whither we are? (2010) Optics and Lasers in Engineering, 48, pp. 133-140. , IMACREVIEW-2009-001
dcterms.bibliographicCitationBone, D.J., Fourier fringe analysis: The two-dimensional phase unwrapping problem (1991) Applied Optics, 30 (25), pp. 3627-3632
dcterms.bibliographicCitationGdeisat, M.A., Burton, D.R., Lilley, F., Arevalillo-Herráez, M., Ammous, M.M.M., Aiding phase unwrapping by increasing the number of residues in two-dimensional wrapped-phase distributions (2015) Applied Optics, 54, pp. 10073-10078. , Dec
dcterms.bibliographicCitationPineda, J., Vargas, R., Romero, L.A., Meneses, J., Marrugo, A.G., Fringe quality map for fringe projection profilometry in LabVIEW (2018) Opt. Pura Apl., 51, pp. 503021-503028. , Dec
dcterms.bibliographicCitationZhao, M., Huang, L., Zhang, Q., Su, X., Asundi, A., Kemao, Q., Quality-guided phase unwrapping technique: Comparison of quality maps and guiding strategies (2011) Applied Optics, 50 (33), pp. 6214-6224
dcterms.bibliographicCitationXu, J., An, D., Huang, X., Yi, P., An efficient minimumdiscontinuity phase-unwrapping method (2016) IEEE Geoscience and Remote Sensing Letters, 13 (5), pp. 666-670
dcterms.bibliographicCitationYu, H., Lan, Y., Xu, J., An, D., Lee, H., Large-scale L0-norm and L1-norm 2-d phase unwrapping (2017) IEEE Transactions on Geoscience and Remote Sensing, 55, pp. 4712-4728. , Aug
dcterms.bibliographicCitationXia, H., Montresor, S., Guo, R., Li, J., Olchewsky, F., Desse, J.-M., Picart, P., Robust processing of phase dislocations based on combined unwrapping and inpainting approaches (2017) Optics Letters, 42 (2), pp. 322-325
dcterms.bibliographicCitationXia, H., Montresor, S., Picart, P., Guo, R., Li, J., Comparative analysis for combination of unwrapping and de-noising of phase data with high speckle decorrelation noise (2018) Optics and Lasers in Engineering, 107, pp. 71-77
dcterms.bibliographicCitationMeng, L., Fang, S., Yang, P., Wang, L., Komori, M., Kubo, A., Image-inpainting and quality-guided phase unwrapping algorithm (2012) Applied Optics, 51 (13), pp. 2457-2462
dcterms.bibliographicCitationXia, H.-T., Guo, R.-X., Fan, Z.-B., Cheng, H.-M., Yang, B.-C., Non-invasive mechanical measurement for transparent objects by digital holographic interferometry based on iterative leastsquares phase unwrapping (2012) Experimental Mechanics, 52 (4), pp. 439-445
dcterms.bibliographicCitationXia, H., Montresor, S., Guo, R., Li, J., Yan, F., Cheng, H., Picart, P., Phase calibration unwrapping algorithm for phase data corrupted by strong decorrelation speckle noise (2016) Optics Express, 24 (25), pp. 28713-28730
dcterms.bibliographicCitationHuang, K., Aviyente, S., Sparse representation for signal classification (2007) Advances in Neural Information Processing Systems, pp. 609-616
dcterms.bibliographicCitationBruckstein, A.M., Donoho, D.L., Elad, M., From sparse solutions of systems of equations to sparse modeling of signals and images (2009) SIAM Review, 51 (1), pp. 34-81
dcterms.bibliographicCitationManat, S., Zhang, Z., Matching pursuit in a time-frequency dictionary (1993) IEEE Trans Signal Processing, 12, pp. 3397-3451
dcterms.bibliographicCitationTibshirani, R., Regression shrinkage and selection via the lasso (1996) Journal of the Royal Statistical Society. Series B (Methodological, pp. 267-288
dcterms.bibliographicCitationRubinstein, R., Peleg, T., Elad, M., Analysis k-SVD: A dictionary-learning algorithm for the analysis sparse model (2013) IEEE Transactions on Signal Processing, 61 (3), pp. 661-677
dcterms.bibliographicCitationElad, M., Starck, J.-L., Querre, P., Donoho, D.L., Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) (2005) Applied and Computational Harmonic Analysis, 19 (3), pp. 340-358
dcterms.bibliographicCitationYang, J., Wright, J., Huang, T.S., Ma, Y., Image super-resolution via sparse representation (2010) IEEE Transactions on Image Processing, 19 (11), pp. 2861-2873
dcterms.bibliographicCitationZhang, J., Zhao, D., Gao, W., Group-based sparse representation for image restoration (2014) IEEE Transactions on Image Processing, 23 (8), pp. 3336-3351
dcterms.bibliographicCitationKwok, T.-H., Wang, C.C., Interactive image inpainting using dct based exemplar matching (2009) International Symposium on Visual Computing, pp. 709-718. , Springer
dcterms.bibliographicCitationElad, M., Aharon, M., Image denoising via learned dictionaries and sparse representation (2006) 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), 1, pp. 895-900. , IEEE
dcterms.bibliographicCitationGuleryuz, O.G., Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part i: Theory (2006) IEEE Transactions on Image Processing, 15 (3), pp. 539-554
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/STSIVA.2019.8730228
dc.subject.keywords3-D Reconstruction
dc.subject.keywordsDictionary Learning
dc.subject.keywordsImage restoration
dc.subject.keywordsPhase unwrapping
dc.subject.keywordsSparse representation
dc.subject.keywordsGaussian noise (electronic)
dc.subject.keywordsOptical data processing
dc.subject.keywordsRestoration
dc.subject.keywordsVision
dc.subject.keywordsWhite noise
dc.subject.keywords3D reconstruction
dc.subject.keywordsAdditive White Gaussian noise
dc.subject.keywordsDictionary learning
dc.subject.keywordsFringe projection profilometry
dc.subject.keywordsImage processing applications
dc.subject.keywordsPhase unwrapping
dc.subject.keywordsSparse representation
dc.subject.keywordsWrapped phase map
dc.subject.keywordsImage reconstruction
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work has been partly funded by Colciencias project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. J. Pineda and J. Meza thank Universidad Tecnológica de Bolívar for a Masters degree scholarship.
dc.relation.conferencedate24 April 2019 through 26 April 2019
dc.type.spaConferencia
dc.identifier.orcid57192270016
dc.identifier.orcid57204065355
dc.identifier.orcid57209542195
dc.identifier.orcid36142156300
dc.identifier.orcid24329839300


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.