Mostrar el registro sencillo del ítem

dc.contributor.editorBotto-Tobar M.
dc.contributor.editorLeon-Acurio J.
dc.contributor.editorDiaz Cadena A.
dc.contributor.editorMontiel Diaz P.
dc.creatorÁlvarez Almeida L.A.
dc.creatorMartínez-Santos, Juan Carlos
dc.date.accessioned2020-03-26T16:33:04Z
dc.date.available2020-03-26T16:33:04Z
dc.date.issued2020
dc.identifier.citationAdvances in Intelligent Systems and Computing; Vol. 1067, pp. 380-389
dc.identifier.isbn9783030320324
dc.identifier.issn21945357
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9152
dc.description.abstractIn the last few years, the Digital Services industry has grown tremendously, offering numerous services through the Internet and using a recent concept or business model called cloud computing. For this reason, new threats and cyber-attacks have appeared, such as Denial of Service attacks. Their main objective is to prevent legitimate users from accessing services (websites, online stores, blogs, social media, banking services, etc.) offered by different companies on the Internet. In addition, it produces collateral damage in host and web servers, for example, exhaustion of network bandwidth and computer resources of the victim. In this article, we will analyze the information contained in NSL-KDD data-set, which possesses important records about the several behaviors of network traffic. These will be selected to present two methods of selection of features that allow the selection of the most relevant attributes within the data set, to build an Intrusion Detection System. The attributes selected for this experiment will be of great help to train and test various kernels of the Support Vector Machine. Once the model has been tested, an evaluation of the classification model will be performed using the cross-validation technique and we finally can choose the best classifier. © 2020, Springer Nature Switzerland AG.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075841900&doi=10.1007%2f978-3-030-32033-1_35&partnerID=40&md5=41f83505d6bd21f43683a89bc481d6af
dc.titleSIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks
dcterms.bibliographicCitationAjagekar, S.K., Jadhav, V., Study on web DDoS attacks detection using multino-mial classifer (2016) 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1-5
dcterms.bibliographicCitationAshraf, J., Latif, S., Handling intrusion and DDoS attacks in software defined networks using machine learning techniques (2014) 2014 National Software Engineering Conference, pp. 55-60
dcterms.bibliographicCitationBhavsar, Y.B., Waghmare, K.C., Intrusion detection system using data mining technique: Support vector machine (2013) Int. J. Emerg. Technol. Adv. Eng., 3 (3), pp. 581-586
dcterms.bibliographicCitationChandrashekar, G., Sahin, F., A survey on feature selection methods (2014) Comput. Electr. Eng., 40 (1), pp. 16-28
dcterms.bibliographicCitationCriscuolo, P.J., Distributed denial of service: Trin00, Tribe Flood Network, Tribe Flood Network 2000, and Stacheldraht CIAC-2319 (2000) Lawrence Livermore National Laboratory, p. 18. , p., February
dcterms.bibliographicCitationDeokar, B., Ambarish, H., Intrusion detection system using log files and reinforcement learning (2012) Int. J. Comput. Appl, 45 (19), pp. 28-35
dcterms.bibliographicCitationDeshmukh, R.V., Devadkar, K.K., Understanding DDoS attack and its effect in cloud environment (2015) Procedia Comput. Sci., 49, pp. 202-210
dcterms.bibliographicCitationDoshi, R., Apthorpe, N., Feamster, N., Machine learning ddos detection for consumer internet of things devices (2018) 2018 IEEE Security and Privacy Workshops (SPW), pp. 29-35
dcterms.bibliographicCitationFayyad, U., Piatetsky-Shapiro, G., Smyth, P., The kdd process for extracting useful knowledge from volumes of data (1996) Commun. ACM, 39 (11), pp. 27-34
dcterms.bibliographicCitationFeizollah, A., Anuar, N., Salleh, R., Amalina, F., Maarof, R.R., Shamshirband, S., A study of machine learning classifiers for anomaly-based mobile botnet detection (2013) Malays. J. Comput. Sci., 26, pp. 251-265
dcterms.bibliographicCitationGyanchandani, M., Rana, J.L., Yadav, R.N., Taxonomy of anomaly based intrusion detection system: A review (2012) Int. J. Sci. Res. Publ., 2 (12), pp. 1-13
dcterms.bibliographicCitationKaur, P., Kumar, M., Bhand, A., A review of detection approaches for distributed denial of service attacks (2017) Syst. Sci. Control Eng., 5 (1), pp. 301-320
dcterms.bibliographicCitationTavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A., A detailed analysis of the KDD cup 99 data set (2009) 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1-6. , pp., IEEE
dcterms.bibliographicCitationZargar, S.T., Joshi, J., Tipper, D., A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks (2013) IEEE Commun. Surv. Tutor., 15 (4), pp. 2046-2069
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event1st International Conference on Advances in Emerging Trends and Technologies, ICAETT 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-030-32033-1_35
dc.subject.keywordsClassification model
dc.subject.keywordsData set
dc.subject.keywordsDoS attacks
dc.subject.keywordsFeature selection
dc.subject.keywordsMachine learning
dc.subject.keywordsSupport vector machine
dc.subject.keywordsClassification (of information)
dc.subject.keywordsFeature extraction
dc.subject.keywordsInformation services
dc.subject.keywordsIntrusion detection
dc.subject.keywordsLearning systems
dc.subject.keywordsNetwork security
dc.subject.keywordsSupport vector machines
dc.subject.keywordsWeb services
dc.subject.keywordsBusiness modeling
dc.subject.keywordsClassification models
dc.subject.keywordsComputer resources
dc.subject.keywordsCross-validation technique
dc.subject.keywordsData set
dc.subject.keywordsDistributed denial of service attack
dc.subject.keywordsIntrusion Detection Systems
dc.subject.keywordsNetwork bandwidth
dc.subject.keywordsDenial-of-service attack
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate29 May 2019 through 31 May 2019
dc.type.spaConferencia
dc.identifier.orcid57210565161
dc.identifier.orcid26325154200


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.