Mostrar el registro sencillo del ítem
SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks
dc.contributor.editor | Botto-Tobar M. | |
dc.contributor.editor | Leon-Acurio J. | |
dc.contributor.editor | Diaz Cadena A. | |
dc.contributor.editor | Montiel Diaz P. | |
dc.creator | Álvarez Almeida L.A. | |
dc.creator | Martínez-Santos, Juan Carlos | |
dc.date.accessioned | 2020-03-26T16:33:04Z | |
dc.date.available | 2020-03-26T16:33:04Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Advances in Intelligent Systems and Computing; Vol. 1067, pp. 380-389 | |
dc.identifier.isbn | 9783030320324 | |
dc.identifier.issn | 21945357 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9152 | |
dc.description.abstract | In the last few years, the Digital Services industry has grown tremendously, offering numerous services through the Internet and using a recent concept or business model called cloud computing. For this reason, new threats and cyber-attacks have appeared, such as Denial of Service attacks. Their main objective is to prevent legitimate users from accessing services (websites, online stores, blogs, social media, banking services, etc.) offered by different companies on the Internet. In addition, it produces collateral damage in host and web servers, for example, exhaustion of network bandwidth and computer resources of the victim. In this article, we will analyze the information contained in NSL-KDD data-set, which possesses important records about the several behaviors of network traffic. These will be selected to present two methods of selection of features that allow the selection of the most relevant attributes within the data set, to build an Intrusion Detection System. The attributes selected for this experiment will be of great help to train and test various kernels of the Support Vector Machine. Once the model has been tested, an evaluation of the classification model will be performed using the cross-validation technique and we finally can choose the best classifier. © 2020, Springer Nature Switzerland AG. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075841900&doi=10.1007%2f978-3-030-32033-1_35&partnerID=40&md5=41f83505d6bd21f43683a89bc481d6af | |
dc.title | SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks | |
dcterms.bibliographicCitation | Ajagekar, S.K., Jadhav, V., Study on web DDoS attacks detection using multino-mial classifer (2016) 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1-5 | |
dcterms.bibliographicCitation | Ashraf, J., Latif, S., Handling intrusion and DDoS attacks in software defined networks using machine learning techniques (2014) 2014 National Software Engineering Conference, pp. 55-60 | |
dcterms.bibliographicCitation | Bhavsar, Y.B., Waghmare, K.C., Intrusion detection system using data mining technique: Support vector machine (2013) Int. J. Emerg. Technol. Adv. Eng., 3 (3), pp. 581-586 | |
dcterms.bibliographicCitation | Chandrashekar, G., Sahin, F., A survey on feature selection methods (2014) Comput. Electr. Eng., 40 (1), pp. 16-28 | |
dcterms.bibliographicCitation | Criscuolo, P.J., Distributed denial of service: Trin00, Tribe Flood Network, Tribe Flood Network 2000, and Stacheldraht CIAC-2319 (2000) Lawrence Livermore National Laboratory, p. 18. , p., February | |
dcterms.bibliographicCitation | Deokar, B., Ambarish, H., Intrusion detection system using log files and reinforcement learning (2012) Int. J. Comput. Appl, 45 (19), pp. 28-35 | |
dcterms.bibliographicCitation | Deshmukh, R.V., Devadkar, K.K., Understanding DDoS attack and its effect in cloud environment (2015) Procedia Comput. Sci., 49, pp. 202-210 | |
dcterms.bibliographicCitation | Doshi, R., Apthorpe, N., Feamster, N., Machine learning ddos detection for consumer internet of things devices (2018) 2018 IEEE Security and Privacy Workshops (SPW), pp. 29-35 | |
dcterms.bibliographicCitation | Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., The kdd process for extracting useful knowledge from volumes of data (1996) Commun. ACM, 39 (11), pp. 27-34 | |
dcterms.bibliographicCitation | Feizollah, A., Anuar, N., Salleh, R., Amalina, F., Maarof, R.R., Shamshirband, S., A study of machine learning classifiers for anomaly-based mobile botnet detection (2013) Malays. J. Comput. Sci., 26, pp. 251-265 | |
dcterms.bibliographicCitation | Gyanchandani, M., Rana, J.L., Yadav, R.N., Taxonomy of anomaly based intrusion detection system: A review (2012) Int. J. Sci. Res. Publ., 2 (12), pp. 1-13 | |
dcterms.bibliographicCitation | Kaur, P., Kumar, M., Bhand, A., A review of detection approaches for distributed denial of service attacks (2017) Syst. Sci. Control Eng., 5 (1), pp. 301-320 | |
dcterms.bibliographicCitation | Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A., A detailed analysis of the KDD cup 99 data set (2009) 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1-6. , pp., IEEE | |
dcterms.bibliographicCitation | Zargar, S.T., Joshi, J., Tipper, D., A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks (2013) IEEE Commun. Surv. Tutor., 15 (4), pp. 2046-2069 | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 1st International Conference on Advances in Emerging Trends and Technologies, ICAETT 2019 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1007/978-3-030-32033-1_35 | |
dc.subject.keywords | Classification model | |
dc.subject.keywords | Data set | |
dc.subject.keywords | DoS attacks | |
dc.subject.keywords | Feature selection | |
dc.subject.keywords | Machine learning | |
dc.subject.keywords | Support vector machine | |
dc.subject.keywords | Classification (of information) | |
dc.subject.keywords | Feature extraction | |
dc.subject.keywords | Information services | |
dc.subject.keywords | Intrusion detection | |
dc.subject.keywords | Learning systems | |
dc.subject.keywords | Network security | |
dc.subject.keywords | Support vector machines | |
dc.subject.keywords | Web services | |
dc.subject.keywords | Business modeling | |
dc.subject.keywords | Classification models | |
dc.subject.keywords | Computer resources | |
dc.subject.keywords | Cross-validation technique | |
dc.subject.keywords | Data set | |
dc.subject.keywords | Distributed denial of service attack | |
dc.subject.keywords | Intrusion Detection Systems | |
dc.subject.keywords | Network bandwidth | |
dc.subject.keywords | Denial-of-service attack | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.relation.conferencedate | 29 May 2019 through 31 May 2019 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 57210565161 | |
dc.identifier.orcid | 26325154200 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.