Mostrar el registro sencillo del ítem

dc.creatorGil-González, Walter
dc.creatorGarces A.
dc.creatorMontoya O.D.
dc.date.accessioned2020-03-26T16:33:03Z
dc.date.available2020-03-26T16:33:03Z
dc.date.issued2019
dc.identifier.citation2019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings
dc.identifier.isbn9781728116266
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9145
dc.description.abstractThis paper proposes a passive PI control for applications of photovoltaic (PV) systems integrated with boost DC-DC converters. The proposed controller guarantees asymptotically stability in closed-loop for the boost DC-DC converter using Lyapunov theory. In addition, the proposed controller is robust to parametric uncertainties and unmodeled dynamics since it does not depend on the system parameters. The current control mode is selected for the PV system since it is modeled as a current source, where its current is computed as a function of solar irradiance and the cells temperature. The current reference is calculated to a perturbing and observe MPPT algorithm with a current-mode controlled to extract the maximum power available in this solar source. The PI-PBC applied to the boost DC-DC converter is compared with a classical PI approach for validating its effectiveness and the robustness. Simulation results are performed in MATLAB/Simulink with a switching frequency of 5 kHz. © 2019 IEEE.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS C2018P020 Department of Science, Information Technology and Innovation, Queensland Government, DSITI
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073445605&doi=10.1109%2fPEPQA.2019.8851555&partnerID=40&md5=a13ac8632f64968e10ad5ce1b7ff3a01
dc.titleCurrent PI Control for PV Systems in DC Microgrids: A PBC Design
dcterms.bibliographicCitationKouro, S., Leon, J.I., Vinnikov, D., Franquelo, L.G., Grid-connected photovoltaic systems: An overview of recent research and emerging pv converter technology (2015) IEEE Industrial Electronics Magazine, 9 (1), pp. 47-61
dcterms.bibliographicCitationRauf, S., Khan, N., Application of dc-ac hybrid grid and solar photovoltaic generation with battery storage using smart grid (2017) International Journal of Photoenergy, 2017
dcterms.bibliographicCitationPandey, A., Tyagi, V., Jeyraj, A., Selvaraj, L., Rahim, N., Tagi, S., Recent advances in solar photovoltaic systems for emerging trends and advanced applications (2016) Renewable and Sustainable Energy Reviews, 53, pp. 859-884
dcterms.bibliographicCitationKadir, A., Fazliana, A., Khatib, T., Elmenreich, W., Integrating photovoltaic systems in power system: Power quality impacts and optimal planning challenges (2014) International Journal of Photoenergy, 2014
dcterms.bibliographicCitationEspinoza-Trejo, D.R., Barcenas-Barcenas, E., Campos-Delgado, D.U., De Angelo, C.H., Voltage-oriented input-output linearization controller as maximum power point tracking technique for photovoltaic systems (2015) IEEE Transactions on Industrial Electronics, 62 (6), pp. 3499-3507
dcterms.bibliographicCitationKakosimos, P.E., Kladas, A.G., Manias, S.N., Fast photovoltaicsystem voltage-or current-oriented mppt employing a predictive digital current-controlled converter (2013) IEEE Transactions on Industrial Electronics, 60 (12), pp. 5673-5685
dcterms.bibliographicCitationVelazquez, I.O., Perez, G.R.E., Giraldo, O.D.M., Ruiz, A.G., Norena, L.F.G., Current control mode in pv systems integrated with dc-dc converters for mppt: An ida-pbc approach (2018) Green Technologies Conference (GreenTech), 2018, pp. 1-6. , IEEE
dcterms.bibliographicCitationBianconi, E., Calvente, J., Giral, R., Mamarelis, E., Petrone, G., Ramos-Paja, C.A., Spagnuolo, G., Vitelli, M., A fast current-based mppt technique employing sliding mode control (2013) IEEE Transactions on Industrial Electronics, 60 (3), pp. 1168-1178
dcterms.bibliographicCitationDe Brito, M.A.G., Galotto, L., Sampaio, L.P., Melo, G.D.A.E., Canesin, C.A., Evaluation of the main mppt techniques for photovoltaic applications (2013) IEEE Transactions on Industrial Electronics, 60 (3), pp. 1156-1167
dcterms.bibliographicCitationShahdadi, A., Khajeh, A., Barakati, S.M., A new slip surface sliding mode controller to implement mppt method in photovoltaic system (2018) Power Electronics, Drives Systems and Technologies Conference (PEDSTC) 2018 9th Annual, pp. 212-217. , IEEE
dcterms.bibliographicCitationSolodovnik, E.V., Liu, S., Dougal, R.A., Power controller design for maximum power tracking in solar installations (2004) IEEE Transactions on Power Electronics, 19 (5), pp. 1295-1304. , Sept
dcterms.bibliographicCitationChiu, C.-S., Ouyang, Y.-L., Robust maximum power tracking control of uncertain photovoltaic systems: A unified ts fuzzy model-based approach (2011) IEEE Transactions on Control Systems Technology, 19 (6), pp. 1516-1526
dcterms.bibliographicCitationKakosimos, P.E., Kladas, A.G., Implementation of photovoltaic array mppt through fixed step predictive control technique (2011) Renewable Energy, 36 (9), pp. 2508-2514
dcterms.bibliographicCitationMetry, M., Shadmand, M.B., Balog, R.S., Abu-Rub, H., Mppt of photovoltaic systems using sensorless current-based model predictive control (2017) IEEE Trans. Ind. Appl, 53 (2), pp. 1157-1167
dcterms.bibliographicCitationMontoya, O.D., Gil-Gonzalez, W., Garces, A., Espinosa-Perez, G., Indirect ida-pbc for active and reactive power support in distribution networks using smes systems with pwm-csc (2018) J. Energy Storage, 17, pp. 261-271
dcterms.bibliographicCitationHernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F., Escobar, G., Adaptive pi stabilization of switched power converters (2010) IEEE Trans. Control Syst. Technol., 18 (3), pp. 688-698
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Engineering Practice, 43, pp. 109-119
dcterms.bibliographicCitationGil-Gonzalez, W., Montoya, O.D., Garces, A., Control of a smes for mitigating subsynchronous oscillations in power systems: A pbc-pi approach (2018) J. Energy Storage, 20, pp. 163-172
dcterms.bibliographicCitationGil-Gonzalez, W., Montoya, O.D., Passivity-based pi control of a smes system to support power in electrical grids: A bilinear approach (2018) Journal of Energy Storage, 18, pp. 459-466
dcterms.bibliographicCitationTan, C.W., Green, T.C., Hernandez-Aramburo, C.A., An improved maximum power point tracking algorithm with current-mode control for photovoltaic applications (2005) Power Electronics and Drives Systems 2005. PEDS 2005. International Conference on, 1, pp. 489-494. , IEEE
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event4th IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/PEPQA.2019.8851555
dc.subject.keywordsBoost converter
dc.subject.keywordsCurrent control mode
dc.subject.keywordsLyapunov theory
dc.subject.keywordsPassive PI control
dc.subject.keywordsPhotovoltaic systems
dc.subject.keywordsControllers
dc.subject.keywordsElectric current control
dc.subject.keywordsElectric inverters
dc.subject.keywordsLyapunov methods
dc.subject.keywordsMATLAB
dc.subject.keywordsPhotovoltaic cells
dc.subject.keywordsPower electronics
dc.subject.keywordsPower quality
dc.subject.keywordsTwo term control systems
dc.subject.keywordsBoost converter
dc.subject.keywordsCurrent control modes
dc.subject.keywordsLyapunov theories
dc.subject.keywordsPhotovoltaic systems
dc.subject.keywordsPI control
dc.subject.keywordsDC-DC converters
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015, in part by the Uni-versidad Tecnologica de Pereira, and in part by the Universidad Tecnologica de Bolivar under Project C2018P020.
dc.relation.conferencedate30 May 2019 through 31 May 2019
dc.type.spaConferencia
dc.identifier.orcid57191493648
dc.identifier.orcid36449223500
dc.identifier.orcid56919564100


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.