Mostrar el registro sencillo del ítem

dc.creatorSana S.S.
dc.creatorOspina-Mateus H.
dc.creatorArrieta F.G.
dc.creatorChedid J.A.
dc.date.accessioned2020-03-26T16:33:03Z
dc.date.available2020-03-26T16:33:03Z
dc.date.issued2019
dc.identifier.citationJournal of Ambient Intelligence and Humanized Computing; Vol. 10, Núm. 5; pp. 2063-2090
dc.identifier.issn18685137
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9144
dc.description.abstractThis research proposes a mathematical model of the problem of job rotation considering ergonomic aspects in repetitive works, lifting tasks and awkward postures in manufacturing environments with high variability. The mathematical model is formulated as a multi-objective optimization problem integrating the ergonomic constraints and is solved using improved non-dominated sorting genetic algorithm. The proposed algorithm allows the generation of diversified results and a greater search convergence on the Pareto front. The algorithm avoids the loss of convergence in each border by means of change and replacement of similar solutions. In this strategy, a single similar result is preserved and the best solution of the previous generation is included. If the outcomes are similar, new randomly generated individuals are proposed to encourage diversity. The obtained results improve the conditions of 69% of the workers. The results show that if the worker rotates starting from a high risk, his variation in risk always decreases in his next assignment. Within the job rotation scheme, no worker is exposed simultaneously to high ergonomic risk thresholds. The model and the algorithm provide good results while considering ergonomic risks. The proposed algorithm shows the potentiality to generate a set of quality of response (Pareto Frontier) in a combinatorial optimization problem in an efficient computational time. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Verlag
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049552472&doi=10.1007%2fs12652-018-0814-3&partnerID=40&md5=83295ee67c4cbae60651a73871d79b2d
dc.titleApplication of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry
dcterms.bibliographicCitationAptel, M., Cail, F., Gerling, A., Louis, O., Proposal of parameters to implement a workstation rotation system to protect against MSDs (2008) Int J Ind Ergon, 38 (11-12), pp. 900-909
dcterms.bibliographicCitationArya, A., Using job rotation to extract employee information (2004) J Law Econ Organ, 20 (2), pp. 400-414
dcterms.bibliographicCitationAsensio-Cuesta, S., Diego-Mas, J.A., Canós-Darós, L., Andrés-Romano, C., A genetic algorithm for the design of job rotation schedules considering ergonomic and competence criteria (2012) Int J Adv Manuf Technol, 60 (9-12), pp. 1161-1174
dcterms.bibliographicCitationAsensio-Cuesta, S., Diego-Mas, J.A., Cremades-Oliver, L.V., González-Cruz, M.C., A method to design job rotation schedules to prevent work-related musculoskeletal disorders in repetitive work (2012) Int J Prod Res, 50 (24), pp. 7467-7478
dcterms.bibliographicCitationAyough, A., Zandieh, M., Farsijani, H., GA and ICA approaches to job rotation scheduling problem: considering employee’s boredom (2012) Int J Adv Manuf Technol, 60 (5-8), pp. 651-666
dcterms.bibliographicCitationAzizi, N., Zolfaghari, S., Liang, M., Modeling job rotation in manufacturing systems: the study of employee’s boredom and skill variations (2010) Int J Prod Econ, 123 (1), pp. 69-85
dcterms.bibliographicCitationBhadury, J., Radovilsky, Z., Job rotation using the multi-period assignment model (2006) Int J Prod Res, 44 (20), pp. 4431-4444
dcterms.bibliographicCitationBrunold, J., Durst, S., Intellectual capital risks and job rotation (2012) J Intellect Cap, 13 (2), pp. 178-195
dcterms.bibliographicCitation(2017) Nonfatal occupational injuries and illnesses resulting in days away from work in 2016, , Bureau of Labor Statistics, Washington, DC
dcterms.bibliographicCitationCardenas-Barron, L.E., Adaptive genetic algorithm for lot-sizing problem with self-adjustment operation rate: a discussion (2010) Int J Prod Econ, 123, pp. 243-245
dcterms.bibliographicCitationCardenas-Barron, L.E., Taleizadeh, A.A., Hybrid metaheuristics algorithms for inventory management problems (2012) Meta-Heuristics Optim Algorithms Eng Bus Econ Finance, 11, pp. 312-356
dcterms.bibliographicCitationCarnahan, B.J., Redfern, M.S., Norman, B.A., A genetic algorithm for designing job rotation schedules considering ergonomic constraints (1999) Paper Presented at the Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress
dcterms.bibliographicCitationCarnahan, B.J., Redfern, M.S., Norman, B., Designing safe job rotation schedules using optimization and heuristic search (2000) Ergonomics, 43 (4), pp. 543-560
dcterms.bibliographicCitationChiasson, M., Imbeau, D., Aubry, K., Delisle, A., Comparing the results of eight methods used to evaluate risk factors associated with musculoskeletal disorders (2012) Int J Ind Ergon, 42 (5), pp. 478-488
dcterms.bibliographicCitationColombini, D., Occhipinti, E., Grieco, A., A check-list model for the quick evaluation of risk exposure (ocra index) (2002) Ergonomics book series, 2, pp. 11-117. , Colombini DEO, Antonio G, (eds), Elsevier, New York
dcterms.bibliographicCitationCoronado-Hernández, J.R., Ospina-Mateus, H., Incorporating ergonomic risks into U-shaped assembly line balancing problem (2013) WPOM, 4 (2), pp. 29-43
dcterms.bibliographicCitationDavid, G.C., Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. [Review] (2005) Occup Med (Lond), 55 (3), pp. 190-199
dcterms.bibliographicCitationDavis, K., Jorgensen, M., Schneider, S., Ergonomics-pros and cons of job rotation as a means of reducing injury costs (2005) J Occup Environ Hyg, 2 (1), pp. D1-D3
dcterms.bibliographicCitationDiego-Mas, J.A., Asensio-Cuesta, S., Sanchez-Romero, M.A., Artacho-Ramirez, M.A., A multi-criteria genetic algorithm for the generation of job rotation schedules (2009) Int J Ind Ergon, 39 (1), pp. 23-33
dcterms.bibliographicCitationEhrgott, M., Ruzika, S., (2004) An Improved E-Constraint Method for Multiobjective Programming, , https://urn:nbn:de:hbz:386-kluedo-13962, Accessed 23 Mar 2018
dcterms.bibliographicCitationEriksson, T., Ortega, J., The adoption of job rotation: testing the theories (2006) Indus Labor Relat Rev, 59, pp. 653-666
dcterms.bibliographicCitationEzeukwu, A.O., Ugwuoke, J., Egwuonwu, A.V., Abaraogu, U.O., Prevalence of work-related musculoskeletal pain among timber workers in Ehgu Metrepolis, Nigeria (2011) Cont J Trop Med, 5 (2), pp. 11-18
dcterms.bibliographicCitationFilus, R., Okimorto, M.L., The effect of job rotation intervals on muscle fatigue–lactic acid (2011) Work (Reading Mass), 41, pp. 1572-1581
dcterms.bibliographicCitationFrazer, M., Norman, R., Wells, R., Neumann, P., The effects of job rotation on the risk of reporting low back pain (2003) Ergonomics, 46 (9), pp. 904-919
dcterms.bibliographicCitationHam, M., Lee, Y.H., Kim, S.H., Real-time scheduling of multi-stage flexible job shop floor (2011) Int J Prod Res, 99, pp. 3715-3730
dcterms.bibliographicCitationHazzard, L., Mautz, J., Job rotation cuts cumulative trauma cases (1992) Pers J, 47 (10), pp. 29-32
dcterms.bibliographicCitationHenderson, C.J., Kumar, S., Ergonomic job rotation in poultry processing (1992) Adv Ind Ergon Saf, 4, pp. 443-450
dcterms.bibliographicCitationHo, W.H., Chang, C.S., Shih, Y.L., Liang, R.D., Effects of job rotation and role stress among nurses on job satisfaction and organizational commitment (2009) BMC Health Serv Res, 9, p. 8
dcterms.bibliographicCitationHsieh, A.-T., Chao, H.Y., A reassessment of the relationship between job specialization, job rotation and job burnout: example of Taiwan’s high-technology industry (2004) Int J Hum Resour Manag, 15 (6), pp. 1108-1123
dcterms.bibliographicCitationHuang, H.J., Job rotation from the employees’ point of view (1999) Res Pract Hum Resour Manag Sci, 7 (1), pp. 75-85
dcterms.bibliographicCitation(2007) Ergonomics. Manual Handling., , Part 3: handling of low loads at high frequency
dcterms.bibliographicCitationJorgensen, M., Davis, K., Characteristics of job rotation in the Midwest US manufacturing sector (2005) Ergonomics, 48 (15), pp. 1721-1733
dcterms.bibliographicCitationKaragöz, S., Yıldız, A.R., A comparison of recent metaheuristic algorithms for crashworthiness optimisation of vehicle thin-walled tubes considering sheet metal forming effects (2017) Int J Veh Des, 73 (1-3), pp. 179-188
dcterms.bibliographicCitationKarhu, O., Kansi, P., Kuorinka, I., Correcting working postures in industry: a practical method for analysis (1977) Appl Ergon, 8 (4), pp. 199-201
dcterms.bibliographicCitationKiani, M., Yildiz, A.R., A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization (2016) Arch Comput Methods Eng, 23 (4), pp. 723-734
dcterms.bibliographicCitationKogi, K., Kawakami, T., Low-cost work improvements that can reduce the risk of musculoskeletal disorders (2003) Int J Ind Ergon, 31 (3), pp. 179-184
dcterms.bibliographicCitationKuah, C.T., Wong, K.Y., Wong, W.P., Monte Carlo data envelopment analysis with genetic algorithm for knowledge management performance measurement (2012) Expert Syst Appl, 39, pp. 9348-9358
dcterms.bibliographicCitationKuijer, P.P., Visser, B., Kemper, H.C.G., Job rotation as a factor in reducing physical workload at a refuse collecting department (1999) Ergonomics, 42 (9), pp. 1167-1178
dcterms.bibliographicCitationLodree, E.J., Geiger, C.D., Jiang, X., Taxonomy for integrating scheduling theory and human factors: review and research opportunities (2009) Int J Ind Ergon, 39 (1), pp. 39-51
dcterms.bibliographicCitationMathiassen, S.E., Diversity and variation in biomechanical exposure: what is it, and why would we like to know? (2006) Appl Ergon, 37 (4), pp. 419-427
dcterms.bibliographicCitationMavrotas, G., Effective implementation of the ε-constraint method in multi-objective mathematical programming problems (2009) Appl Math Comput, 213 (2), pp. 455-465
dcterms.bibliographicCitationMcAtamney, L., Nigel Corlett, E., RULA: a survey method for the investigation of work-related upper limb disorders (1993) Appl Ergon, 24 (2), pp. 91-99
dcterms.bibliographicCitationMichalos, G., Makris, S., Rentzos, L., Chryssolouris, G., Dynamic job rotation for workload balancing in human based assembly systems (2010) CIRP J Manuf Sci Technol, 2 (3), pp. 153-160
dcterms.bibliographicCitationMichalos, G., Makris, S., Mourtzis, D., A web based tool for dynamic job rotation scheduling using multiple criteria (2011) CIRP Ann Manuf Technol, 60 (1), pp. 453-456
dcterms.bibliographicCitationMoore, S.J., Garg, A., The strain index: a proposed method to analyze jobs for risk of distal upper extremity disorders (1995) Am Ind Hyg Assoc, 56 (5), pp. 443-458
dcterms.bibliographicCitationMoreira, M.C.O., Costa, A.M., Hybrid heuristics for planning job rotation schedules in assembly lines with heterogeneous workers (2013) Int J Prod Econ, 141 (2), pp. 552-560
dcterms.bibliographicCitationMossa, G., Boenzi, F., Digiesi, S., Mummolo, G., Romano, V.A., Productivity and ergonomic risk in human based production systems: a job-rotation scheduling model (2016) Int J Prod Econ, 171, pp. 471-477
dcterms.bibliographicCitationOcchipinti, E., Colombini, D., Updating reference values and predictive models of the OCRA method in the risk assessment of work-related musculoskeletal disorders of the upper limbs (2007) Ergonomics, 50 (11), pp. 1727-1739
dcterms.bibliographicCitationOtto, A., Scholl, A., Reducing ergonomic risks by job rotation scheduling (2013) OR Spectrum, 35 (3), pp. 711-733
dcterms.bibliographicCitationÖztürk, N., Yıldız, A.R., Kaya, N., Öztürk, F., Neuro-genetic design optimization framework to support the integrated robust design optimization process in CE (2006) Concurr Eng Res Appl, 14 (1), pp. 5-16
dcterms.bibliographicCitationPholdee, N., Bureerat, S., Yıldız, A.R., Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame (2017) Int J Veh Des, 73 (1-3), pp. 20-53
dcterms.bibliographicCitationRissen, D., Melin, B., Sandsj, L., Dohns, I., Lundberg, U., Psycho physiological stress reactions, trapezius muscle activity, and neck and shoulder pain among female cashiers before and after introduction of job rotation (2002) Work Stress, 16 (2), pp. 127-137
dcterms.bibliographicCitationRodriguez, A.C., Barrero, L.H., Job rotation: effects on muscular activity variability (2017) Appl Ergon, 60, pp. 83-92
dcterms.bibliographicCitationSantosa, B., Damayanti, R., Sarkar, B., Solving multi-product inventory ship routing with a heterogeneous fleet model using a hybrid cross entropy-genetic algorithm: a case study in Indonesia (2016) Prod Manuf Res, 4, pp. 90-113
dcterms.bibliographicCitationSeckiner, S.U., Kurt, M., Ant colony optimization for the job rotation scheduling problem (2008) Appl Math Comput, 201 (1-2), pp. 149-160
dcterms.bibliographicCitationSekiner, S.U., Kurt, M., A simulated annealing approach to the solution of job problems (2007) Appl Math Comput, 188 (1), pp. 31-45
dcterms.bibliographicCitationSnook, S.H., Ciriello, V.M., The design of manual handling tasks: revised tables of maximum acceptable weights and forces (1991) Ergonomics, 34 (9), pp. 1197-1213
dcterms.bibliographicCitationTella, B., Akinbo, S., Saheed, A., Caleb, G., Prevalence and impacts of low back pain among peasant farmers in south-west Nigeria (2013) Int J Occup Med Environ Health, 26, pp. 621-627
dcterms.bibliographicCitationTharmmaphornphilas, W., Green, B., Carnahan, B.J., Norman, B.A., Applying mathematical modeling to create job rotation schedules for minimizing occupational noise exposure (2003) Aiha J, 64 (3), pp. 401-405
dcterms.bibliographicCitationWaters, T., Lu, M.-L., Occhipinti, E., New procedure for assessing sequential manual lifting jobs using the revised NIOSH lifting equation (2007) Ergonomics, 50 (11), pp. 1761-1770
dcterms.bibliographicCitationWells, R., McFall, K., Task selection for increased mechanical exposure variation: relevance to job rotation (2010) Ergonomics, 53 (3), pp. 314-323
dcterms.bibliographicCitationYildiz, A.R., A comparative study of population-based optimization algorithms for turning operations (2012) Inf Sci, 210, pp. 81-88
dcterms.bibliographicCitationYildiz, A.R., Comparison of evolutionary-based optimization algorithms for structural design optimization (2013) Eng Appl Artif Intell, 26 (1), pp. 327-333
dcterms.bibliographicCitationYıldız, B.S., A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems (2017) Int J Veh Des, 73 (1-3), pp. 208-218
dcterms.bibliographicCitationYıldız, B.S., Lekesiz, H., Fatigue-based structural optimisation of vehicle components (2017) Int J Veh Des, 73 (1-3), pp. 54-62
dcterms.bibliographicCitationYildiz, A.R., Saitou, K., Topology synthesis of multi component structural assemblies in continuum domains (2011) J Mech Des, 133 (1), p. 011008
dcterms.bibliographicCitationYildiz, A.R., Solanki, K.N., Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach (2012) Int J Adv Manuf Technol, 59 (1-4), pp. 367-376
dcterms.bibliographicCitationYıldız, B.S., Yıldız, A.R., Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes (2017) Mater Test, 59 (5), pp. 425-429
dcterms.bibliographicCitationYildiz, B.S., Lekesiz, H., Yildiz, A.R., Structural design of vehicle components using gravitational search and charged system search algorithms (2016) Mater Test, 58 (1), pp. 79-81
dcterms.bibliographicCitationYıldız, A.R., Kurtuluş, E., Demirci, E., Yıldız, B.S., Karagöz, S., Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm (2016) Mater Test, 58 (1), pp. 75-78
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/s12652-018-0814-3
dc.subject.keywordsErgonomic constraints
dc.subject.keywordsGenetic algorithm
dc.subject.keywordsJob rotation
dc.subject.keywordsManufacturing
dc.subject.keywordsCombinatorial optimization
dc.subject.keywordsErgonomics
dc.subject.keywordsGenetic algorithms
dc.subject.keywordsIndustrial research
dc.subject.keywordsManufacture
dc.subject.keywordsMultiobjective optimization
dc.subject.keywordsOccupational risks
dc.subject.keywordsScheduling algorithms
dc.subject.keywordsCombinatorial optimization problems
dc.subject.keywordsComputational time
dc.subject.keywordsJob rotation
dc.subject.keywordsManufacturing environments
dc.subject.keywordsManufacturing industries
dc.subject.keywordsMulti-objective optimization problem
dc.subject.keywordsNon- dominated sorting genetic algorithms
dc.subject.keywordsSimilar solution
dc.subject.keywordsComputational efficiency
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid15078194000
dc.identifier.orcid57194034904
dc.identifier.orcid57202852177
dc.identifier.orcid57193533853


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.