Show simple item record

dc.creatorMontoya O.D.
dc.creatorGil-González W.
dc.creatorGrisales-Noreña L.F.
dc.date.accessioned2020-03-26T16:33:02Z
dc.date.available2020-03-26T16:33:02Z
dc.date.issued2020
dc.identifier.citationInternational Journal of Electrical Power and Energy Systems; Vol. 115
dc.identifier.issn01420615
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9141
dc.description.abstractThis report addresses the problem of optimal location and sizing of constant power sources (distributed generators (DGs)) in direct current (DC) networks for improving network performance in terms of voltage profiles and energy efficiency. An exact mixed-integer nonlinear programming (MINLP) method is proposed to represent this problem, considering the minimization of total power losses as the objective function. Furthermore, the power balance per node, voltage regulation limits, DG capabilities, and maximum penetration of the DG are considered as constraints. To solve the MINLP model, a convex relaxation is proposed using a Taylor series expansion, in conjunction with the transformation of the binary variables into continuous variables. The solution of the relaxed convex model is constructed using a sequential quadratic programming approach to minimize the linearization error using the Taylor series method. The solution of the relaxed convex model is used as the input for a heuristic random hyperplane method that facilitates the recovery of binary variables that solve the original MINLP model. Two DC distribution feeders, one having 21 and the other having 69 nodes, were used as test systems. Simulation results were obtained using the MATLAB/quadprog package and contrasted with the large-scale nonlinear solvers available for General algebraic modeling system (GAMS) software metaheuristic optimization approaches to demonstrate the robustness and effectiveness of our proposed methodology. © 2019 Elsevier Ltdeng
dc.description.sponsorshipUniversidad Tecnológica de Pereira, UTP: C2018P020 Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072686799&doi=10.1016%2fj.ijepes.2019.105442&partnerID=40&md5=1afc2e3394c01af635e748ed905ecff0
dc.titleRelaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationLu, S., Wang, L., Lo, T., Prokhorov, A.V., Integration of wind power and wave power generation systems using a DC microgrid (2015) IEEE Trans Ind Appl, 51 (4), pp. 2753-2761
dcterms.bibliographicCitationKwon, M., Choi, S., Control scheme for autonomous and smooth mode switching of bidirectional DCDC converters in a DC microgrid (2018) IEEE Trans Power Electron, 33 (8), pp. 7094-7104
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr Power Syst Res, 151, pp. 149-153
dcterms.bibliographicCitationWang, L., Wang, K., Lee, W., Chen, Z., Power-flow control and stability enhancement of four parallel-operated offshore wind farms using a line-commutated HVDC link (2010) IEEE Trans Power Del, 25 (2), pp. 1190-1202
dcterms.bibliographicCitationWang, L., Thi, M.S.N., Comparative stability analysis of offshore wind and marine-current farms feeding into a power grid using HVDC links and HVAC line (2013) IEEE Trans Power Del, 28 (4), pp. 2162-2171
dcterms.bibliographicCitationMitra, P., Zhang, L., Harnefors, L., Offshore wind integration to a weak grid by VSC-HVDC links using power-synchronization control: a case study (2014) IEEE Trans Power Del, 29 (1), pp. 453-461
dcterms.bibliographicCitationGavriluta, C., Candela, I., Citro, C., Luna, A., Rodriguez, P., Design considerations for primary control in multi-terminal VSC-HVDC grids (2015) Electr Power Syst Res, 122, pp. 33-41
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J Energy Storage, 21, pp. 1-8
dcterms.bibliographicCitationGarcés, A., Herrera, J., Gil-González, W., Montoya, O.D., Small-signal stability in low-voltage DC-grids (2018) IEEE ANDESCON, 2018, pp. 1-5
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr Power Syst Res, 163, pp. 375-381
dcterms.bibliographicCitationPinares, G., Bongiorno, M., Modeling and analysis of VSC-based HVDC systems for DC network stability studies (2016) IEEE Trans Power Del, 31 (2), pp. 848-856
dcterms.bibliographicCitationSun, J., Autonomous local control and stability analysis of multiterminal DC systems (2015) IEEE J Emerg Sel Top Power Electron, 3 (4), pp. 1078-1089
dcterms.bibliographicCitationShamsi, P., Fahimi, B., Stability assessment of a DC distribution network in a hybrid micro-grid application (2014) IEEE Trans Smart Grid, 5 (5), pp. 2527-2534
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: a quadratic convex approximation (2018) IEEE Trans Circuits Syst, 2, p. 1
dcterms.bibliographicCitationWang, C., Li, X., Guo, L., Li, Y.W., A nonlinear-disturbance-observer-based DC-bus voltage control for a hybrid AC/DC microgrid (2014) IEEE Trans Power Electron, 29 (11), pp. 6162-6177
dcterms.bibliographicCitationWang, J., Jin, C., Wang, P., A uniform control strategy for the interlinking converter in hierarchical controlled hybrid AC/DC microgrids (2018) IEEE Trans Ind Electron, 65 (8), pp. 6188-6197
dcterms.bibliographicCitationDavari, M., Mohamed, Y.A.I., Robust multi-objective control of VSC-based DC-voltage power port in hybrid AC/DC multi-terminal micro-grids (2013) IEEE Trans Smart Grid, 4 (3), pp. 1597-1612
dcterms.bibliographicCitationAng, G., Arcibal, P.J., Crisostomo, L.M.R., Ostia, C.F., Joaquin, P.J.C.S., Tabuton, J.E.C., Implementation of a fuzzy controlled buck-boost converter for photovoltaic systems (2017) Energy Procedia, 143, pp. 641-648. , leveraging Energy Technologies and Policy Options for Low Carbon Cities
dcterms.bibliographicCitationWang, B., Ma, G., Xu, D., Zhang, L., Zhou, J., Switching sliding-mode control strategy based on multi-type restrictive condition for voltage control of buck converter in auxiliary energy source (2018) Appl Energy, 228, pp. 1373-1384
dcterms.bibliographicCitationViswanatha, V., Venkata Siva Reddy, R., Microcontroller based bidirectional buckboost converter for photo-voltaic power plant (2018) J Electr Syst Inf Technol, 5 (3), pp. 745-758
dcterms.bibliographicCitationSerna-Garcés, S.I., https://doi.org/10.3390/en9040245, Gonzalez Montoya D, Ramos-Paja CA. Sliding-mode control of a charger/discharger DC/DC converter for DC-bus regulation in renewable power systems. Energies 9 (4). doi:
dcterms.bibliographicCitationValencia, P.A.O., Ramos-Paja, C.A., Sliding-mode controller for maximum power point tracking in grid-connected photovoltaic systems (2015) Energies, 8 (11), pp. 12363-12387. , <http://www.mdpi.com/1996-1073/8/11/12318>
dcterms.bibliographicCitationDuberney Murillo-Yarce, A.G.-R., A.E.-M. 1, Passivity-based control for DC-microgrids with constant power terminals in island mode operation (2018) Revista Facultad de Ingeniería, (86), pp. 32-39
dcterms.bibliographicCitationHe, W., Soriano-Rangel, C.A., Ortega, R., Astolfi, A., Mancilla-David, F., Li, S., Energy shaping control for buckboost converters with unknown constant power load (2018) Control Eng Pract, 74, pp. 33-43
dcterms.bibliographicCitationHernández-Márquez, E., Silva-Ortigoza, R., García-Sánchez, J.R., Marcelino-Aranda, M., Saldaña-González, G., A DC/DC buck-boost converterinverterDC motor system: sensorless passivity-based control (2018) IEEE Access, 6, pp. 31486-31492
dcterms.bibliographicCitationShadmand, M.B., Balog, R.S., Abu-Rub, H., Model predictive control of PV sources in a smart DC distribution system: maximum power point tracking and droop control (2014) IEEE Trans Energy Convers, 29 (4), pp. 913-921
dcterms.bibliographicCitationXie, Y., Ghaemi, R., Sun, J., Freudenberg, J.S., Model predictive control for a full bridge DC/DC converter (2012) IEEE Trans Control Syst Technol, 20 (1), pp. 164-172
dcterms.bibliographicCitationGeyer, T., Papafotiou, G., Morari, M., Hybrid model predictive control of the step-down DCDC converter (2008) IEEE Trans Control Syst Technol, 16 (6), pp. 1112-1124
dcterms.bibliographicCitationGhiasi, M.I., Golkar, M.A., Hajizadeh, A., Lyapunov based-distributed fuzzy-sliding mode control for building integrated-DC microgrid with plug-in electric vehicle (2017) IEEE Access, 5, pp. 7746-7752
dcterms.bibliographicCitationKakigano, H., Miura, Y., Ise, T., Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique (2013) IEEE Trans Power Electron, 28 (5), pp. 2246-2258
dcterms.bibliographicCitationSerafimovski, A., Martinez-Salamero, L., Leyva, R., Stankovski, M., Shutinoski, G., Dzhekov, T., Linear state-feedback control of a buck-boost converter using passivity technique (2001) IFAC Proc Vol, 34 (3), pp. 131-136. , 2nd IFAC Workshop on Automatic Systems for Building the Infrastructure in Developing Countries 2001, Ochrid, Rep of Macedonia, 21–23 May 2001
dcterms.bibliographicCitationKim, S., Lee, K., Robust feedback-linearizing output voltage regulator for DC/DC boost converter (2015) IEEE Trans Ind Electron, 62 (11), pp. 7127-7135
dcterms.bibliographicCitationGarces, A., On convergence of Newtons method in power flow study for DC microgrids (2018) IEEE Trans Power Syst, p. 1
dcterms.bibliographicCitationKarimipour, D., Salmasi, F.R., Stability analysis of AC microgrids with constant power loads based on Popov's absolute stability criterion (2015) IEEE Trans Circuits Syst II Express Briefs, 62 (7), pp. 696-700
dcterms.bibliographicCitationGarces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal HVDC systems considering DC/DC converters (2016) 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217
dcterms.bibliographicCitationMontoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model (2018) IEEE Trans Circuits Syst, 2, p. 1
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans Power Syst, p. 1
dcterms.bibliographicCitationLotfi, H., Khodaei, A., AC versus DC microgrid planning (2017) IEEE Trans Smart Grid, 8 (1), pp. 296-304
dcterms.bibliographicCitationAhmed, H.M.A., Eltantawy, A.B., Salama, M.M.A., A planning approach for the network configuration of ac-dc hybrid distribution systems (2018) IEEE Trans Smart Grid, 9 (3), pp. 2203-2213
dcterms.bibliographicCitationNasir, M., Iqbal, S., Khan, H.A., Optimal planning and design of low-voltage low-power solar DC microgrids (2018) IEEE Trans Power Syst, 33 (3), pp. 2919-2928
dcterms.bibliographicCitationSingh, A.K., Parida, S.K., Optimal placement of DGs using MINLP in deregulated electricity market (2010) Proceedings of the international conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010), pp. 1-7
dcterms.bibliographicCitationKaur, S., Kumbhar, G., Sharma, J., A MINLP technique for optimal placement of multiple DG units in distribution systems (2014) Int J Electr Power Energy Syst, 63, pp. 609-617. , <http://www.sciencedirect.com/science/article/pii/S014206151400372X>
dcterms.bibliographicCitationBohre, A.K., Agnihotri, G., Dubey, M., Optimal sizing and sitting of DG with load models using soft computing techniques in practical distribution system (2016) IET Gener Transm Distrib, 10 (11), pp. 2606-2621
dcterms.bibliographicCitationAbdelaziz, A., Ali, E., Elazim, S.A., Optimal sizing and locations of capacitors in radial distribution systems via flower pollination optimization algorithm and power loss index (2016) Eng Sci Technol Int J, 19 (1), pp. 610-618
dcterms.bibliographicCitationMoradi, M., Abedini, M., A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems (2012) Int J Electr Power Energy Syst, 34 (1), pp. 66-74
dcterms.bibliographicCitationJamian, J., Mustafa, M., Mokhlis, H., Optimal multiple distributed generation output through rank evolutionary particle swarm optimization (2015) Neurocomputing, 152, pp. 190-198
dcterms.bibliographicCitationSultana, S., Roy, P.K., Krill herd algorithm for optimal location of distributed generator in radial distribution system (2016) Appl Soft Comput, 40, pp. 391-404
dcterms.bibliographicCitationGandomkar, M., Vakilian, M., Ehsan, M., A genetic based tabu search algorithm for optimal DG allocation in distribution networks (2005) Electric Power Compon Syst, 33 (12), pp. 1351-1362
dcterms.bibliographicCitationAbido, M.A., Optimal power flow using tabu search algorithm (2002) Electric Power Compon Syst, 30 (5), pp. 469-483
dcterms.bibliographicCitationGrisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (1018), pp. 1-27
dcterms.bibliographicCitationMohanty, B., Tripathy, S., A teaching learning based optimization technique for optimal location and size of DG in distribution network (2016) J Electr Syst Inf Technol, 3 (1), pp. 33-44
dcterms.bibliographicCitationKanwar, N., Gupta, N., Niazi, K., Swarnkar, A., Simultaneous allocation of distributed resources using improved teaching learning based optimization (2015) Energy Convers Manage, 103, pp. 387-400
dcterms.bibliographicCitationNguyen, T.P., Dieu, V.N., Vasant, P., Symbiotic organism search algorithm for optimal size and siting of distributed generators in distribution systems (2017) Int J Energy Optim Eng, 6 (3), pp. 1-28
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electr Power Syst Res, 169, pp. 18-23
dcterms.bibliographicCitationNesterov, Y., Introductory lectures on convex optimization: a basic course (2004), <https://www.springer.com/us/book/9781402075537>, Springer US
dcterms.bibliographicCitationDahdari, V., Sequential Quadratic Programming (SQP) for solving constrained production optimization: case study from Brugge field (2010), <https://books.google.com.co/books?id=oKn6ewEACAAJ>, University of Oklahoma
dcterms.bibliographicCitationNejdawi, I.M., Clements, K.A., Davis, P.W., An efficient interior point method for sequential quadratic programming based optimal power flow (2000) IEEE Trans Power Syst, 15 (4), pp. 1179-1183
dcterms.bibliographicCitationSubathra, M.S.P., Selvan, S.E., Victoire, T.A.A., Christinal, A.H., Amato, U., A hybrid with cross-entropy method and sequential quadratic programming to solve economic load dispatch problem (2015) IEEE Syst J, 9 (3), pp. 1031-1044
dcterms.bibliographicCitationSheng, W., Liu, K., Cheng, S., Meng, X., Dai, W., A trust region SQP method for coordinated voltage control in smart distribution grid (2016) IEEE Trans Smart Grid, 7 (1), pp. 381-391
dcterms.bibliographicCitationBai, Y., Xu, Z., Xi, X., Wang, S., Objective variation simplex algorithm for continuous piecewise linear programming (2017) Tsinghua Sci Technol, 22 (1), pp. 73-82
dcterms.bibliographicCitationVelasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Noreña, L.F., Optimal power flow in direct-current power grids via black hole optimization (2019) Adv Electrical Electron Eng, 17 (1), pp. 24-32
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Grisales-Noreña, L.F., Optimal power dispatch of DGs in DC power grids: a hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem (2018) WSEAS Trans Power Syst, 13 (33), pp. 335-346
dcterms.bibliographicCitationWang, P., Zhang, L., Xu, D., Optimal sizing of distributed generations in DC microgrids with lifespan estimated model of batteries (2018) 2018 21st International Conference on Electrical Machines and Systems (ICEMS), pp. 2045-2049
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.ijepes.2019.105442
dc.subject.keywordsConvex optimization
dc.subject.keywordsDirect current networks
dc.subject.keywordsDistributed generation
dc.subject.keywordsRandom hyperplane method
dc.subject.keywordsRelaxed mathematical model
dc.subject.keywordsTaylor series expansion
dc.subject.keywordsConvex optimization
dc.subject.keywordsDistributed power generation
dc.subject.keywordsEnergy efficiency
dc.subject.keywordsGeometry
dc.subject.keywordsInteger programming
dc.subject.keywordsMATLAB
dc.subject.keywordsQuadratic programming
dc.subject.keywordsRelaxation processes
dc.subject.keywordsTaylor series
dc.subject.keywordsVoltage regulators
dc.subject.keywordsDirect current
dc.subject.keywordsDistributed generator (DGs)
dc.subject.keywordsMeta-heuristic optimizations
dc.subject.keywordsMixed-integer nonlinear programming
dc.subject.keywordsRandom hyperplane method
dc.subject.keywordsSequential quadratic programming
dc.subject.keywordsTaylor series expansions
dc.subject.keywordsTaylor series methods
dc.subject.keywordsHeuristic methods
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis study was funded in part by the Administrative Department of Science, Technology, and Innovation of Colombia ( COLCIENCIAS ) through its National Scholarship Program, under Grant 727-2015 , and in part by Universidad Tecnológica de Bolívar , under Project C2018P020 .
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid55791991200


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.