Mostrar el registro sencillo del ítem

dc.creatorCampillo Jiménez, Javier Eduardo
dc.creatorDomínguez Jiménez, Juan Antonio
dc.creatorCabrera J.
dc.date.accessioned2020-03-26T16:33:02Z
dc.date.available2020-03-26T16:33:02Z
dc.date.issued2019
dc.identifier.citationProceedings of the 2nd Latin American Conference on Intelligent Transportation Systems, ITS LATAM 2019
dc.identifier.isbn9781728100210
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9140
dc.description.abstractGlobal use of carbon-based fuels increased by 1.6 % in 2017 and continued increasing in 2018, after managing to maintain emissions flat between 2014-2017. This trend deviates from the emissions trajectory required to fulfill the climate change goals to maintain the earth's temperature below 2-degrees. The transport sector accounts for about a quarter of these emissions but its the sector with the highest dependence on fossil-fuels. In order to reduce emissions, several approaches have been taken, from increasing fuel efficiency to the use of alternative fuels altogether. The most recent trend leans towards electrifiying the transport sector. High penetration of mature renewable energy technologies such as wind and solar photovoltaics as well as energy storage improvements are leading the way. While mass adoption of electric-propulsion systems for boats are still years away, recent pilot projects suggest that electrifying boats for passenger transportation may be not only a sustainable transport solution but its lower operation costs could facilitate its penetration on densely populated coastal and river cities where conventional public transport systems are reaching their full capacity. © 2019 IEEE.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85067109915&doi=10.1109%2fITSLATAM.2019.8721330&partnerID=40&md5=88755b0d1698decc07d7770f8c64315b
dc.titleSustainable boat transportation throughout electrification of propulsion systems: Challenges and opportunities
dcterms.bibliographicCitation(2019) World Energy Outlook 2018, , OECD/IEA. Tech. Rep
dcterms.bibliographicCitation(2018) Renewable Power Generation Costs in 2017, p. 160. , International Renewable Energy Agency-IRENA
dcterms.bibliographicCitationMega, V.P., The paths to decarbonisation through cities and seas (2019) Eco-Responsible Cities and the Global Ocean. Cham, pp. 121-166
dcterms.bibliographicCitation(2017) CO2 Emissions from Fuel Compbustion 2018, , Tech. Rep. International Energy Agency
dcterms.bibliographicCitationTanko, M., Burke, M., Transport innovations and their effect on cities: The emergence of urban linear ferries worldwide (2017) Transportation Research Procedia, 25, pp. 3957-3970. , https://linkinghub.elsevier.com/retrieve/pii/S2352146517307901
dcterms.bibliographicCitationMarco Brambilla, A.M., The european union maritime transport system: Focus on ferries (2016) EU Publications, Policy Department, (2)
dcterms.bibliographicCitationBradley, M.J., (2007) American Bus Association 700 13th Street, NW Suite 575 Washington, DC 20005, p. 17
dcterms.bibliographicCitationCorbett, J.J., Emissions from ships (1997) Science, 278 (5339), pp. 823-824. , http://www.sciencemag.org/cgi/doi/10.1126/science.278.5339.823, Oct
dcterms.bibliographicCitationCorbett, J.J., Fischbeck, P.S., Pandis, S.N., Global nitrogen and sulfur inventories for oceangoing ships (1999) Journal of Geophysical Research: Atmospheres, 104 (D3), pp. 3457-3470. , http://doi.wiley.com/10.1029/1998JD100040, Feb
dcterms.bibliographicCitationFarrell, A.E., Corbett, J.J., Winebrake, J.J., Controlling air pollution from passenger ferries: Cost-effectiveness of seven technological options (2002) Journal of the Air & Waste Management Association, 52 (12), pp. 1399-1410. , https://www.tandfonline.com/doi/full/10.1080/10473289.2002.10470874, Dec
dcterms.bibliographicCitation(2015) Third IMO Greenhouse Gas Study, , International Maritime Association. Tech. Rep
dcterms.bibliographicCitationBaird, A.J., Pedersen, R.N., Analysis of CO2 emissions for island ferry services (2013) Journal of Transport Geography, 32, pp. 77-85. , https://linkinghub.elsevier.com/retrieve/pii/S0966692313001610, Oct
dcterms.bibliographicCitationBuffaloe, G.M., Lack, D.A., Williams, E.J., Coffman, D., Hayden, K.L., Lerner, B.M., Li, S.-M., Cappa, C.D., Black carbon emissions from in-use ships: A California regional assessment (2014) Atmospheric Chemistry and Physics, 14 (4), pp. 1881-1896. , https://www.atmos-chem-phys.net/14/1881/2014/, Feb
dcterms.bibliographicCitationYuan, Y., Wang, J., Yan, X., Li, Q., Long, T., A design and experimental investigation of a large-scale solar energy/diesel generator powered hybrid ship (2018) Energy, 165, pp. 965-978. , https://linkinghub.elsevier.com/retrieve/pii/S0360544218318498, Dec
dcterms.bibliographicCitation(2017) Global EV Outlook 2017, , OECD/IEA. Tech. Rep
dcterms.bibliographicCitationGagatsi, E., Estrup, T., Halatsis, A., Exploring the potentials of electrical waterborne transport in Europe: The e-ferry concept (2016) Transportation Research Procedia, 14, pp. 1571-1580. , https://linkinghub.elsevier.com/retrieve/pii/S2352146516301235
dcterms.bibliographicCitationHorne, L., Electric propulsion of ships (1939) North East Coast Institution of Engineers and Shipbuilders
dcterms.bibliographicCitationDesmond, K., (2017) Electric Boats and Ships: A History, , McFarland
dcterms.bibliographicCitationAlnes, O., Eriksen, S., Vartdal, B.-J., Battery-powered ships: a class society perspective (2017) IEEE Electrification Magazine, 5 (3), pp. 10-21. , http://ieeexplore.ieee.org/document/8025676/, Sep
dcterms.bibliographicCitationVassileva, I., Campillo, J., Adoption barriers for electric vehicles: Experiences from early adopters in Sweden (2017) Energy, 120, pp. 632-641. , http://linkinghub.elsevier.com/retrieve/pii/S0360544216317741, Feb
dcterms.bibliographicCitationCullinane, K., Cullinane, S., Policy on reducing shipping emissions (2019) Green Ports., pp. 35-62. , https://linkinghub.elsevier.com/retrieve/pii/B9780128140543000037, Elsevier
dcterms.bibliographicCitationXylia, M., Leduc, S., Laurent, A.-B., Patrizio, P., Meer Der Y.Van, Kraxner, F., Silveira, S., Impact of bus electrification on carbon emissions: The case of Stockholm (2019) Journal of Cleaner Production, 209, pp. 74-87. , https://linkinghub.elsevier.com/retrieve/pii/S0959652618330993, Feb
dcterms.bibliographicCitationRietmann, N., Lieven, T., How policy measures succeeded to promote electric mobility Worldwide review and outlook (2019) Journal of Cleaner Production, 206, pp. 66-75. , https://linkinghub.elsevier.com/retrieve/pii/S0959652618328415, Jan
dcterms.bibliographicCitationVassallo, J.M., Bueno, P.C., (2019) Transport Challenges in Latin American Cities: Lessons Learnt from Policy Experiences, , Feb
dcterms.bibliographicCitationTahil, W., The trouble with lithium (2007) Implications of Future PHEV Production for Lithium Demand. Martainville: Meridian International Research
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event2nd Latin American Conference on Intelligent Transportation Systems, ITS LATAM 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/ITSLATAM.2019.8721330
dc.subject.keywordsElectric propulsion
dc.subject.keywordsElectric vehicles
dc.subject.keywordsEnergy storage
dc.subject.keywordsMaritime transport
dc.subject.keywordsPassenger ferry
dc.subject.keywordsSustainable transportation
dc.subject.keywordsWaterborne transportation
dc.subject.keywordsAlternative fuels
dc.subject.keywordsBoats
dc.subject.keywordsClimate change
dc.subject.keywordsEarth (planet)
dc.subject.keywordsElectric propulsion
dc.subject.keywordsElectric vehicles
dc.subject.keywordsEnergy storage
dc.subject.keywordsFossil fuels
dc.subject.keywordsIntelligent systems
dc.subject.keywordsMass transportation
dc.subject.keywordsRenewable energy resources
dc.subject.keywordsSolar power generation
dc.subject.keywordsElectric propulsion systems
dc.subject.keywordsMaritime transport
dc.subject.keywordsPassenger ferries
dc.subject.keywordsPassenger transportation
dc.subject.keywordsPublic transport systems
dc.subject.keywordsRenewable energy technologies
dc.subject.keywordsSustainable transport
dc.subject.keywordsSustainable transportation
dc.subject.keywordsIntelligent vehicle highway systems
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate19 March 2019 through 20 March 2019
dc.type.spaConferencia
dc.identifier.orcid55609096600
dc.identifier.orcid56682770100
dc.identifier.orcid57209268757


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.