Mostrar el registro sencillo del ítem
Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System
dc.contributor.editor | Orjuela-Canon A.D. | |
dc.creator | Álvarez Almeida L.A. | |
dc.creator | Carlos Martinez Santos J. | |
dc.date.accessioned | 2020-03-26T16:33:02Z | |
dc.date.available | 2020-03-26T16:33:02Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | 2019 IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019 - Proceedings | |
dc.identifier.isbn | 9781728116143 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9137 | |
dc.description.abstract | The integrity of information and services is one of the more evident concerns in the world of global information security, due to the fact that it has economic repercussions on the digital industry. For this reason, big companies spend a lot of money on systems that protect them against cyber-attacks like Denial of Service attacks. In this article, we will use all the attributes of the data-set NSL-KDD to train and test a Support Vector Machine model. This model will then be applied to a method of feature selection to obtain the most relevant attributes within the aforementioned data-set and train the model again. The main goal is comparing the results obtained in both instances of training and validate which was more efficient. © 2019 IEEE. | eng |
dc.description.sponsorship | EEE Colombia Section;EEE Colombian Caribbean Section;IEEE Computational Intelligence Colombian Chapter;IEEE Computational Intelligence Society | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070855791&doi=10.1109%2fColCACI.2019.8781803&partnerID=40&md5=e5847944721efd67a906bd5aaabba5f9 | |
dc.source | Scopus2-s2.0-85070855791 | |
dc.title | Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System | |
dcterms.bibliographicCitation | (1999) Canadian Institute for Cybersecurity, , nsl-kdd Dataset | |
dcterms.bibliographicCitation | Dhanabal, L., Shantharajah, S.P., A study on nsl-kdd dataset for intrusion detection system based on classification algorithms (2015) International Journal of Advanced Research in Computer and Communication Engineering, 4 (6), pp. 446-452 | |
dcterms.bibliographicCitation | Fakieh, K., Survey on ddos attacks prevention and detection in cloud (2016) International Journal of Applied Information Systems, 12 | |
dcterms.bibliographicCitation | Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., The kdd process for extracting useful knowledge from volumes of data (1996) Communications of the ACM, 39 (11), pp. 27-34 | |
dcterms.bibliographicCitation | Gyanchandani, M., Rana, J.L., Yadav, R.N., Taxonomy of anomaly based intrusion detection system: A review (2012) International Journal of Scientific and Research Publications, 2 (12), pp. 1-13 | |
dcterms.bibliographicCitation | Kaur, P., Kumar, M., Bhandari, A., A review of detection approaches for distributed denial of service attacks (2017) Systems Science & Control Engineering, 5 (1), pp. 301-320. , January | |
dcterms.bibliographicCitation | Markou, M., Singh, S., Novelty detection: A reviewpart 2: Neural network based approaches (2003) Signal Processing, 83 (12), pp. 2499-2521 | |
dcterms.bibliographicCitation | Meti, N., Narayan, D.G., Baligar, V.P., Detection of distributed denial of service attacks using machine learning algorithms in software defined networks. In (2017) 2017 International Conference on Advances in Computing Communications and Informatics (ICACCI, pp. 1366-1371 | |
dcterms.bibliographicCitation | Parsaei, M.R., Rostami, S.M., Javidan, R., A hybrid data mining approach for intrusion detection on imbalanced nsl-kdd dataset (2016) International Journal of Advanced Computer Science and Applications, 7 (6), pp. 20-25 | |
dcterms.bibliographicCitation | Patcha, A., Park, J.-M., An overview of anomaly detection techniques: Existing solutions and latest technological trends (2007) Computer Networks, 51 (12), pp. 3448-3470 | |
dcterms.bibliographicCitation | Boddula, N., Kalime, S., A study on detection of distributed denial of service attacks using machine learning techniques (2018) International Journal of Research, p. 10 | |
dcterms.bibliographicCitation | Zargar, S.T., Joshi, J., Tipper, D., A survey of defense mechanisms against distributed denial of service (DDOS) flooding attacks (2013) IEEE Communications Surveys & Tutorials, 15 (4), pp. 2046-2069 | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 2019 IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1109/ColCACI.2019.8781803 | |
dc.subject.keywords | Classification model | |
dc.subject.keywords | Data set | |
dc.subject.keywords | Dos Attacks | |
dc.subject.keywords | Feature selection | |
dc.subject.keywords | Machine learning | |
dc.subject.keywords | Support vector machine | |
dc.subject.keywords | Artificial intelligence | |
dc.subject.keywords | Classification (of information) | |
dc.subject.keywords | Denial-of-service attack | |
dc.subject.keywords | Intrusion detection | |
dc.subject.keywords | Learning systems | |
dc.subject.keywords | Network security | |
dc.subject.keywords | Statistical tests | |
dc.subject.keywords | Support vector machines | |
dc.subject.keywords | Classification models | |
dc.subject.keywords | Cyber-attacks | |
dc.subject.keywords | Data set | |
dc.subject.keywords | Features selection | |
dc.subject.keywords | Intrusion Detection Systems | |
dc.subject.keywords | Support vector machine models | |
dc.subject.keywords | Feature extraction | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.relation.conferencedate | 5 June 2019 through 7 June 2019 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 57210565161 | |
dc.identifier.orcid | 26325154200 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.