Generating dynamic fuzzy models for prediction problems
dc.creator | Contreras J. | |
dc.creator | Acuña O. | |
dc.date.accessioned | 2020-03-26T16:33:00Z | |
dc.date.available | 2020-03-26T16:33:00Z | |
dc.date.issued | 2009 | |
dc.identifier.citation | Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS | |
dc.identifier.isbn | 9781424445776 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9125 | |
dc.description.abstract | In this paper we present a new method to generate interpretable fuzzy systems from training data. A fuzzy system is developed for nonlinear systems modeling and for system state forecasting. The antecedent partition uses triangular sets with 0.5 interpolations avoiding the presence of complex overlapping that happens in other methods. Singleton consequents are employed and least square method is used to adjust the consequents. This approach is not a hybrid system and does not employ other techniques, like neural network or genetic algorithm. Two benchmark problems have been used to illustrate our approach: the first one is an input-output NARMAX model, which is one of the most popular models in the neural and fuzzy literature; the second one is the chaotic, nonperiodic and nonconvergence Mackey-Glass series, commonly used to evaluate a time series forecasting scheme. ©2009 IEEE. | eng |
dc.description.sponsorship | Minist. Commun. Inf. Technol. Azerbaijan | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350426514&doi=10.1109%2fNAFIPS.2009.5156422&partnerID=40&md5=acd20cb69276fbda7287db513a2967e9 | |
dc.source | Scopus2-s2.0-70350426514 | |
dc.title | Generating dynamic fuzzy models for prediction problems | |
dcterms.bibliographicCitation | Wang, L.-X., Mendel, J.M., Generating fuzzy rules by learning form examples (1992) IEEE Transactions System, Man and Cybernetics, 22, pp. 1414-1427. , Nov | |
dcterms.bibliographicCitation | Yu, W., Ortiz-Rodriguez, F., Moreno-Armendariz, M., Hierarchical Fuzzy CMAC for Nonlinear System Modeling (2008) IEEE Trans. Fuzzy Systems, 16 (5), pp. 1302-1314. , Oct | |
dcterms.bibliographicCitation | Sugeno, M., Yasukawa, T., A fuzzy logic based approach to qualitative modeling (1993) Transactions on Fuzzy Systems, 1 (1), pp. 7-31 | |
dcterms.bibliographicCitation | Bezdek, J.C., (1987) Pattern recognition with Fuzzy Objective Function Algorithms, , Ed. Plenum Press | |
dcterms.bibliographicCitation | Guztafson, E.E., Kessel, W.C., Fuzzy Clustering with a Fuzzy Covariance Matrix (1979) IEEE CDC, pp. 503-516. , San Diego, California, pp | |
dcterms.bibliographicCitation | Nauck, D., Kruse, R., Nefclass - a neuro-fuzzy approach for the classification of data (1995) Proceedings of the Symposium on Applied Computing | |
dcterms.bibliographicCitation | Nauck, D., Kruse, D.R., Neuro-fuzzy systems for function approximation (1999) Fuzzy Sets and System, 101 (2), pp. 261-271. , Jan | |
dcterms.bibliographicCitation | Paiva, R.P., Dourado, A., Interpretability and Learning in Neuro-Fuzzy Systems (2004) Fuzzy Sets and System, 147, pp. 17-38 | |
dcterms.bibliographicCitation | Espinosa, J., Vandewalle, J., Constructing Fuzzy Models with Linguistic Integrity from Numerical Data-Afreli Algorithm (2000) IEEE Trans. Fuzzy Systems, 8 (5), pp. 591-600. , Oct | |
dcterms.bibliographicCitation | Sudkamp, T., Knapp, A., Knapp, J., Model Generation by Domain Refinement and Rule Reduction (2003) IEEE Trans. on System, Man and Cybernetics, 33 (1). , Feb | |
dcterms.bibliographicCitation | Marsili-Libelli, S., Fuzzy Prediction of Algal Blooms in the Orbetello Lagoon (2004) Environmental Modelling & Software, 19, pp. 799-8008 | |
dcterms.bibliographicCitation | Wang, W., Vrbanek, J., An Evolving Fuzzy Predictor for Industrial Applications (2008) IEEE Trans. Fuzzy Systems, 16 (6), pp. 1439-1449 | |
dcterms.bibliographicCitation | Stach, W., Kurgan, L., Pedrycz, W., Numerical and Linguistic Prediction of Time Series with the Use of Fuzzy Cognitive Maps (2008) IEEE Trans. Fuzzy Systems, 16 (1), pp. 61-72 | |
dcterms.bibliographicCitation | Liu, X., Kwan, B.K., Foo, S.Y., (2003) Time Series Prediction Based on Fuzzy Principles, , Preprint, Department of Electrical and Computer Engineering, Florida State University | |
dcterms.bibliographicCitation | Contreras, J., Misa, R., Murillo, L., Obtención de Modelos Borrosos Interpretables de Procesos Dinámicos (2008) RIAI: Revista Iberoamericana de Automática e Informática Industrial, 5 (3), pp. 70-77. , Jul | |
dcterms.bibliographicCitation | Contreras, J., Misa, R., Murillo, L., Interpretable Fuzzy Models from Data and Adaptive Fuzzy Control: A New Approach (2007) IEEE International Conference on Fuzzy Systems, pp. 1591-1596. , IEEE Computational Intelligence Society. Pags, Jul | |
dcterms.bibliographicCitation | Juang, C.-F., A TSK Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithm (2002) IEEE Trans. Fuzzy Systems, 10 (2), pp. 155-170. , Apr | |
dcterms.bibliographicCitation | Chae, Y., Oh, K., Lee, W., Kang, G., Transformation of TSK fuzzy system into fuzzy system with singleton consequents and its application (1999) IEEE International Conference on Fuzzy Systems, 2, pp. 969-973. , IEEE Computational Intelligence Society | |
dcterms.bibliographicCitation | Pedriycz, W., Why Triangular Membership Functions?, IEEE Trans (1994) Fuzzy Sets and System, 64, pp. 21-30 | |
dcterms.bibliographicCitation | Meghdadi, A.H., Akbarzadeh-T, M.-R., Fuzzy Modeling of Nonlinear Stochastic System by Learning from Example (2001) 9th IFSA World Congress and 20th NAFIPS International Conference, pp. 2746-2751. , Pp, Jul | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 2009 Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2009 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1109/NAFIPS.2009.5156422 | |
dc.subject.keywords | Dynamic systems | |
dc.subject.keywords | Fuzzy identification | |
dc.subject.keywords | Interpretability | |
dc.subject.keywords | Least squares method | |
dc.subject.keywords | Bench-mark problems | |
dc.subject.keywords | Dynamic systems | |
dc.subject.keywords | Fuzzy identification | |
dc.subject.keywords | Fuzzy literature | |
dc.subject.keywords | Fuzzy models | |
dc.subject.keywords | Input-output | |
dc.subject.keywords | Interpretability | |
dc.subject.keywords | Least square methods | |
dc.subject.keywords | Least squares method | |
dc.subject.keywords | NARMAX model | |
dc.subject.keywords | Prediction problem | |
dc.subject.keywords | System state | |
dc.subject.keywords | Time series forecasting | |
dc.subject.keywords | Training data | |
dc.subject.keywords | Triangular sets | |
dc.subject.keywords | Composite structures | |
dc.subject.keywords | Data processing | |
dc.subject.keywords | Dynamic programming | |
dc.subject.keywords | Fuzzy systems | |
dc.subject.keywords | Hybrid systems | |
dc.subject.keywords | Nonlinear systems | |
dc.subject.keywords | Time series | |
dc.subject.keywords | Fuzzy logic | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.relation.conferenceplace | Cincinnati, OH | |
dc.relation.conferencedate | 14 June 2009 through 17 June 2009 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 35104582500 | |
dc.identifier.orcid | 35104250500 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Productos de investigación [1458]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.