Mostrar el registro sencillo del ítem

dc.creatorBermúdez-Valencia L.F.
dc.creatorSarria-López B.
dc.date.accessioned2020-03-26T16:32:57Z
dc.date.available2020-03-26T16:32:57Z
dc.date.issued2012
dc.identifier.citationCTyF - Ciencia, Tecnologia y Futuro; Vol. 4, Núm. 5; pp. 85-100
dc.identifier.issn01225383
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9103
dc.description.abstractThe main objective of this paper is the experimental investigation of the energy indexes of a cogeneration plant with Gas Turbines (GT) and Heat Recuperator Steam Generators (HRSGs) while changing its operational load. The energy indicators were determined using the following International Standards and Codes: ASME PTC1, ASME PTC 22 and ASME PTC 4.4. The results of energy calculations indexes are in the form of curves. The mathematical equations of the curves corresponding to the real energy indexes are obtained applying multivariate regression. The main research results correspond to a process plant with nominal capacity of 4800 kW. The range of lower energy consumption values obtained for the HR of the turbine are around 13000 kJ/kW·h, while for the Heat Rate of the plant is 7000 kJ/kW·h. For these values of the Heat Rate (HR), the electrical output remains in the environment of 3500 kW. It was found that the thermal efficiency of HRSGs varies from 50 to 60% with very high values of sensible heat losses in flue gases due to the operation with high excess air and high temperatures of the gases at the outlet of HRSGs. The contributions of this research are used in operational management in order to reduce fuel consumption and environmental impact on the generation of electricity and heat cogeneration plant evaluated. The results of this research in the plant have been implemented to monitor the transaction on the basis of the variation in real-time energy indexes evaluated, besides the traditional control of the parameters only, which is more effective.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84870798096&partnerID=40&md5=8b5a6f4239bf881ca4053b432ab7b6f0
dc.titleResearch on energy indexes of cogenerated plants with gas turbines and heat recuperator steam generators
dcterms.bibliographicCitationGeneral Instructions for Power Test Code, , ANSI/ASME PTC 1-2004(R2009). American Society of Mechanical Engineers / 31-Dec-2004. ISBN: 0791829227
dcterms.bibliographicCitationPerformance Test Code on Gas Turbines, , ANSI/ASME PTC 22-1997 (R2006). American Society of Mechanical Engineers / 30-May-2006. ISBN: 0791829545
dcterms.bibliographicCitationGas Turbine Heat Recovery Steam Generators, , ANSI/ASME PTC 4.4-1981(R1992), American Society of Mechanical Engineers / 01-jan-1981. ISBN: 9780791831397
dcterms.bibliographicCitationBalli, O., Aras, H., Hepbasli, A., Thermodynamic and thermoeconomic analysis of a trigeneration (TRIGEN) system with a gas-diesel machine: Part II - An application (2010) Energy Conversion and Management, 51 (11), pp. 2260-2271
dcterms.bibliographicCitationBaukal, C.E., (2000) Heat Transfer in Industrial Combustion, , New York: CRC Press LLC
dcterms.bibliographicCitationBermúdez, L.F., Método para el control operacional en línea de la generación de electricidad en turbogas: Caso Biofilm S.A. planta Cartagena (2010) Tesis de Maestría Fac. Ing, 191p. , Universidad Tecnológica de Bolívar. Cartagena, Colombia
dcterms.bibliographicCitationBoyce, M., (2002) Gas Turbine Engineering Handbook, , 2nd ed. Houston: Bristish library
dcterms.bibliographicCitationBruno, J., Ortega, V., Coronas, A., Integration of cooling systems into gas turbine trigeneration systems using biogás: Case study of a sewage treatment plant (2009) Applied Energy, 86 (6), pp. 837-847
dcterms.bibliographicCitationCengel, Y.A., (2008) Termodinámica, , Sexta Edición. New York: McGraww-Hill Companies
dcterms.bibliographicCitationChandok, J., Kar, I., Tuli, S., Estimation of Furnace exit Gas Temperature (FEGT) using optimized radial basis and back-propagation neural networks (2008) Energy Conversion and Management, 49 (8), pp. 1989-1998
dcterms.bibliographicCitationCoskun, C., Oktay, Z., Ilten, N., A new approach for simplifying the calculation of flue gas specific heat and specific exergy value depending on fuel composition (2009) Energy, 34 (11), pp. 1898-1902
dcterms.bibliographicCitationEicher, A., Calculation of combustion gas flow rate and residence time based on stack gas data (2000) Waste Management, 20 (5-6), pp. 403-407
dcterms.bibliographicCitation(2003) Manual de Gestión Energética Integral, , E2 Energía Eficiente, Biofilm S.A., Planta Cartagena
dcterms.bibliographicCitationGalip, T., Durriye, B., Thermoeconomic analysis of a trigeneration system (2004) Applied Thermal Engineering, 24 (17-18), pp. 2689-2699
dcterms.bibliographicCitationGanapathy, V., (1993) Applied Heat Transfer, , Tulsa: Penn Well Books Company
dcterms.bibliographicCitationGanapathy, V., (2003) Industrial Boiler and Heat Recovery Steam Generators, , New York: Marcel Dekker
dcterms.bibliographicCitationGarcia, G.S., Fraile, C.D., (2008) Cogeneración-diseño Operación y Mantenimiento de Plantas, , 2nd. Ed. Madrid: Diaz Santos
dcterms.bibliographicCitationHorlock, J.H., (2003) Advanced Gas Turbine Cycles, , UK: Elsevier Science
dcterms.bibliographicCitation(2008) Análisis Del Potencial de Cogeneración de Alta Eficiencia en España. 2010 - 2015-2020, , IDAE, Instituto para la Diversificación y el Ahorro de Energía
dcterms.bibliographicCitationKehlhofer, R., (1997) Combined - Cycle Gas and Steam Turbine Power Plant, , Oklahoma: Penn Well
dcterms.bibliographicCitationKenneth, E., Heselton, P.E., (2005) Boiler Operatos Handbook, , New York: The Fairmont Press
dcterms.bibliographicCitationKizniezova, N.V., (1987) Cálculo Térmico de Agregados de Calderas, , Método Normativo de la Unión Sovíetica. Moscú: Energía
dcterms.bibliographicCitationKyle, B.G., (1984) Chemical and Process Thermodynamics, , Englewood Cliffs: NJ Prentice - Hall
dcterms.bibliographicCitationPitanga, R., Hacon, D., Tessarollo, A., Reis, J., Thermodynamic analysis of trigeneration systems taking into account refrigeration, heating and electricity load demands (2010) Energy and Buildings, 42 (12), pp. 2323-2330
dcterms.bibliographicCitationSala, J., (1994) Cogeneration. Thermodynamic, Technological and Economic, , Bilbao: Servicio Editorial Universidad del Vasco
dcterms.bibliographicCitationSantos, L., Tecnología de monitoreo, control, optimización y diagnostico operacional para el incremento de la eficiencia energética en centrales termoeléctricas (1999) Tesis Doctoral, 186p. , Universidad de Cienfuegos, Cienfuegos, Cuba
dcterms.bibliographicCitationSchicktanz, M., Waple, J., Henning, H., Primary energy and economic analysis of combined heating, cooling and power systems (2011) Energy, 36 (1), pp. 575-585
dcterms.bibliographicCitationStultz, S.C., Kitto, J.B., (1992) Steam: Its Generation and Use, , 40th edition. Ohio: The Babcock and Wilcox Company, Barberton
dcterms.bibliographicCitationTeopa, E., Picón, M., Rodríguez, M., Thermal integration of trigeneration systems (2005) Applied Thermal Engineering, 25 (7), pp. 973-984
dcterms.bibliographicCitationTroyanovski, B.M., Filippov, G.A., Bulkin, A.E., (1987) Turbinas de Vapor y de Gas de Las Centrales Nucleoeléctricas, , Moscú: Editorial Mir
dcterms.bibliographicCitationYrjölä, J., Paavilainen, J., Sillanpää, M., Modelling and experimental studies on heat transfer in the convection section of a biomass boiler. Inter (2006) J. of Enery Reser., 30 (12), pp. 939-953
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.subject.keywordsCogeneration
dc.subject.keywordsEnergy indexes
dc.subject.keywordsMathematic equations
dc.subject.keywordsSpecific consumptions
dc.subject.keywordsThermal efficiency
dc.subject.keywordsCogeneration
dc.subject.keywordsEnergy indexes
dc.subject.keywordsMathematic equations
dc.subject.keywordsSpecific consumptions
dc.subject.keywordsThermal efficiency
dc.subject.keywordsCogeneration plants
dc.subject.keywordsEnergy utilization
dc.subject.keywordsEnvironmental impact
dc.subject.keywordsFlue gases
dc.subject.keywordsGas turbines
dc.subject.keywordsRecuperators
dc.subject.keywordsRegression analysis
dc.subject.keywordsSteam generators
dc.subject.keywordsResearch
dc.subject.keywordsElectronic equipment
dc.subject.keywordsEnergy conservation
dc.subject.keywordsEnergy efficiency
dc.subject.keywordsHeat balance
dc.subject.keywordsHigh temperature
dc.subject.keywordsIndex method
dc.subject.keywordsMathematical analysis
dc.subject.keywordsOxide
dc.subject.keywordsRegression analysis
dc.subject.keywordsResearch work
dc.subject.keywordsTemperature effect
dc.subject.keywordsTurbine
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid55516284800
dc.identifier.orcid55516586900


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.