Show simple item record

Location of FACTS Devices in Power Systems: Application to the IEEE 9 bus System

dc.creatorGarrido V.M.
dc.creatorMontoya O.D.
dc.creatorAlba L.F.
dc.creatorJimenez D.
dc.date.accessioned2020-03-26T16:32:54Z
dc.date.available2020-03-26T16:32:54Z
dc.date.issued2019
dc.identifier.citationProceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019
dc.identifier.isbn9781728136462
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9084
dc.description.abstractThis paper proposes a methodology to find the location of a flexible transmission system in AC in a power system, based on a nodal order and the analysis of repetitive power flows. To check the proposed methodology, the IEEE 9 bus system was taken as a case study. Results obtained were analyzed in two moments, initially the power flow is simulated without modifications, reading of the loss variables in the transmission lines, power factor, active and reactive power and voltage in p.u. in the buses. Then the power flow is simulated again and the resulting values are taken and compared with those initially taken, finding that by locating the device in bus 5, a better response is obtained. © 2019 IEEE.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073573050&doi=10.1109%2fINTERCON.2019.8853560&partnerID=40&md5=d2c22b46d71c8b91f7679c0168a4441c
dc.titleLocation of FACTS Devices in Power Systems: Application to the IEEE 9 bus System
dcterms.bibliographicCitationBindal, R.K., A review of benefits of facts devices in power system (2014) International Journal of Engineering and Advanced Technology, 3 (4), pp. 105-108
dcterms.bibliographicCitationWelhazi, Y., Guesmi, T., Ben Jaoued, I., Abdallah, H.H., Power system stability enhancement using facts controllers in multimachine power systems (2014) Journal of Electrical Systems, 10 (3), pp. 276-291
dcterms.bibliographicCitationDuong, T.L., Gang, Y.J., Truong, V.A., Application of min cut algorithm for optimal location of facts devices considering system loadability and cost of installation (2014) International Journal of Electrical Power &Energy Systems, 63, pp. 979-987
dcterms.bibliographicCitationYu, Q., Applications of flexible ac transmissions system (facts) technology in smartgrid and its EMC impact (2014) IEEE International Symposium on Electromagnetic Compatibility, pp. 392-397
dcterms.bibliographicCitationAsaway, S.S., Al-Attiyah, S., Impact of facts device in electrical power system (2016) International Conference on Electrical, Electronics, and Optimization Techniques, pp. 2488-2495
dcterms.bibliographicCitationBerrouk, F., Ali Rachedi, B., Lemzadmi, A., Bounaya, K., Zeghache, H., Applications of shunt FACTS controller for voltage stability improvment (2014) International Conference on Electrical Sciences and Technologies in Maghreb, pp. 1-6
dcterms.bibliographicCitationDuan, C., Fang, W., Jiang, L., Niu, S., Facts devices allocation via sparse optimization (2016) IEEE Transactions on Power Systems, 31 (2), pp. 1308-1319
dcterms.bibliographicCitationRezaee Jordehi, A., Optimal allocation of FACTS devices for static security enhancement in power systems via imperialistic competitive algorithm (ICA) (2016) Applied Soft Computing, 48, pp. 317-328
dcterms.bibliographicCitationAbdelaziz, A.Y., El-Sharkawy, M.A., Attia, M.A., El-Saadany, E.F., Optimal location of series FACTS to improve the performance of power system with wind penetration (2014) IEEE PES General Meeting, pp. 1-5
dcterms.bibliographicCitationPatel, H., Paliwal, R., Congestion management in deregulated power system using facts devices (2014) International Journal of Advances in Engineering &Technology, 8 (2), pp. 175-184
dcterms.bibliographicCitationNanda Kumar, E., Dhanasekaran, R., Optimal power flow with facts controller using hybrid pso (2014) Arabian Journal for Science and Engineering, 39 (4), pp. 3137-3146
dcterms.bibliographicCitationGasperic, S., Mihalic, R., The impact of serial controllable facts devices on voltage stability (2015) International Journal of Electrical Power &Energy Systems, 64, pp. 1040-1048
dcterms.bibliographicCitationKhan, M.T., Siddiqui, A.S., FACTS device control strategy using PMU (2016) Perspectives in Science, 8, pp. 730-732
dcterms.bibliographicCitationChansareewittaya, S., Jirapong, P., Optimal allocation of multi-type FACTS controllers for total transfer capability enhancement using hybrid particle swarm optimization (2014) International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 1-6
dcterms.bibliographicCitationWang, L., Xie, X., Jiang, Q., Li, H., Liu, H., Investigation of ssr in practical dfig-based wind farms connected to a series-compensated power system (2015) IEEE Transactions on Power Systems, 30 (5), pp. 2772-2779
dcterms.bibliographicCitationSaribulut, L., A novel average filter based phase-locked loop for FACTS devices (2016) Electric Power Systems Research, 136, pp. 289-297
dcterms.bibliographicCitationTembhurnikar, G., Chaudhari, A., Wani, N., Gajare, A., Gajare, P., A review on reactive power compensation techniques using facts devices (2014) International Journal of Engineering and Management Research, 4 (1), pp. 76-80
dcterms.bibliographicCitationKolosok, I., Tikhonov, A., Mahnitko, A., State estimation of electric power systems including facts models (svc and statcom) (2016) Power and Electrical Engineering, 33, pp. 40-45
dcterms.bibliographicCitationAnderson, P.M., Fouad, A.A., Power system control and stability (1994) IEEE Press
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event26th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/INTERCON.2019.8853560
dc.subject.keywordsFACTS
dc.subject.keywordsPower flow
dc.subject.keywordsReactive power
dc.subject.keywordsSVC
dc.subject.keywordsElectric load flow
dc.subject.keywordsLocation
dc.subject.keywordsReactive power
dc.subject.keywordsActive and Reactive Power
dc.subject.keywordsBus systems
dc.subject.keywordsFacts devices
dc.subject.keywordsFlexible transmission systems
dc.subject.keywordsNodal orderings
dc.subject.keywordsPower factors
dc.subject.keywordsPower flows
dc.subject.keywordsRepetitive power flows
dc.subject.keywordsFlexible AC transmission systems
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate12 August 2019 through 14 August 2019
dc.type.spaConferencia
dc.identifier.orcid57208126635
dc.identifier.orcid56919564100
dc.identifier.orcid57211342997
dc.identifier.orcid57212785022


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/