Show simple item record

Modeling and control of a small hydro-power plant for a DC microgrid

dc.creatorGil-González W.
dc.creatorMontoya O.D.
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:32:53Z
dc.date.available2020-03-26T16:32:53Z
dc.date.issued2020
dc.identifier.citationElectric Power Systems Research; Vol. 180
dc.identifier.issn03787796
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9072
dc.description.abstractThis paper presents the modeling and control of a small hydro-power plant (SHP) for a DC microgrid based on passivity theory. The SHP is made up of a turbine, a permanent magnet synchronous generator (PMSG), a voltage source converter and a DC microgrid. The electrical, mechanical and hydraulic dynamics in the mathematical model of the SHP are considered. We employ a nonlinear controller based on passivity, whose stability is guaranteed under practically reasonable assumptions. Our simulation results show better performance of the proposed controller when compared with a PI controller in all of the scenarios that were considered. © 2019 Elsevier B.V.eng
dc.description.sponsorshipUniversidad Tecnológica de Pereira, UTP: C2018P020 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075434843&doi=10.1016%2fj.epsr.2019.106104&partnerID=40&md5=c817713e3c712e1babd6cf339a24e837
dc.titleModeling and control of a small hydro-power plant for a DC microgrid
dcterms.bibliographicCitationHirsch, A., Parag, Y., Guerrero, J., Microgrids: a review of technologies, key drivers, and outstanding issues (2018) Renew. Sustain. Energy Rev., 90, pp. 402-411
dcterms.bibliographicCitationWang, Y., Wang, C., Xu, L., Meng, J., Hei, Y., Adjustable inertial response from the converter with adaptive droop control in dc grids (2018) IEEE Trans. Smart Grid, , 1-1
dcterms.bibliographicCitationLiu, J., Hossain, M., Lu, J., Rafi, F., Li, H., A hybrid ac/dc microgrid control system based on a virtual synchronous generator for smooth transient performances (2018) Electr. Power Syst. Res., 162, pp. 169-182
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationReddy, K.M., Singh, B., Multi-objective control algorithm for small hydro and SPV generation-based dual mode reconfigurable system (2017) IEEE Trans. Smart Grid, 9 (5), pp. 4942-4952
dcterms.bibliographicCitationChowdhury, D., Hasan, A.S.M.K., Khan, M.Z.R., Scalable DC microgrid architecture with phase shifted full bridge converter based power management unit (2018) 2018 10th International Conference on Electrical and Computer Engineering (ICECE), pp. 22-25
dcterms.bibliographicCitationHasan, A.S.M.K., Chowdhury, D., Khan, M.Z.R., Scalable DC microgrid architecture with a one-way communication based control interface (2018) 2018 10th International Conference on Electrical and Computer Engineering (ICECE), pp. 265-268
dcterms.bibliographicCitationMa, W.-J., Wang, J., Lu, X., Gupta, V., Optimal operation mode selection for a dc microgrid (2016) IEEE Trans. Smart Grid, 7 (6), pp. 2624-2632
dcterms.bibliographicCitationBorkowski, D., Analytical model of small hydropower plant working at variable speed (2018) IEEE Trans. Energy Convers., 33 (4), pp. 1886-1894
dcterms.bibliographicCitationHasan, A.S.M., Chowdhury, D., Khan, M.Z.R., Performance Analysis of a Scalable DC Microgrid Offering Solar Power Based Energy Access and efficient control for Domestic Loads (2018)
dcterms.bibliographicCitationGil-González, W., Garces, A., Escobar-Mejía, A., Montoya, O.D., Passivity-based control for hydro-turbine governing systems (2018) 2018 IEEE PES Transmission Distribution Conference and Exhibition – Latin America (T D-LA), pp. 1-5
dcterms.bibliographicCitationDubey, V.K., Singhal, A., Suryawanshi, H., High efficient AC/DC Converter For micro-hydro-power plant for DC grid (2014) International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), pp. 1-5
dcterms.bibliographicCitationMeshram, S., Agnihotri, G., Gupta, S., Modeling of grid connected dc linked PV/hydro hybrid system (2013) Electr. Electron. Eng.: Int. J., 2 (3), pp. 13-27
dcterms.bibliographicCitationSinha, S., Yadav, A., Modelling of DC linked PV/hydro hybrid system for rural electrification (2017) 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), pp. 55-59
dcterms.bibliographicCitationBreban, S., Robyns, B., Radulescu, M.M., Study of a grid-connected hybrid wind/micro-hydro-power system associated with a supercapacitor energy storage device (2010) 2010 12th International Conference on Optimization of Electrical and Electronic Equipment, pp. 1198-1203
dcterms.bibliographicCitationFang, H., Chen, L., Shen, Z., Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor (2011) Energy Convers. Manag., 52 (4), pp. 1763-1770
dcterms.bibliographicCitationSimani, S., Alvisi, S., Venturini, M., Fault tolerant control of a simulated hydroelectric system (2016) Control Eng. Pract., 51, pp. 13-25
dcterms.bibliographicCitationGuo, W., Yang, J., Wang, M., Lai, X., Nonlinear modeling and stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel under load disturbance (2015) Energy Convers. Manage., 106, pp. 127-138
dcterms.bibliographicCitationZhu, W., Zheng, Y., Dai, J., Zhou, J., Design of integrated synergetic controller for the excitation and governing system of hydraulic generator unit (2017) Eng. Appl. Artif. Intell., 58, pp. 79-87
dcterms.bibliographicCitationKishor, N., Singh, S., Simulated response of NN based identification and predictive control of hydro plant (2007) Expert Syst. Appl., 32 (1), pp. 233-244
dcterms.bibliographicCitationYuan, X., Chen, Z., Yuan, Y., Huang, Y., Li, X., Li, W., Sliding mode controller of hydraulic generator regulating system based on the input/output feedback linearization method (2016) Math. Compt. Simul., 119, pp. 18-34
dcterms.bibliographicCitationNagode, K., Škrjanc, I., Modelling and internal fuzzy model power control of a Francis water turbine (2014) Energies, 7 (2), pp. 874-889
dcterms.bibliographicCitationJones, D., Mansoor, S., Predictive feedforward control for a hydroelectric plant (2004) IEEE Trans. Control Syst. Technol., 12 (6), pp. 956-965
dcterms.bibliographicCitationAtta, K.T., Johansson, A., Cervantes, M.J., Gustafsson, T., Maximum power point tracking for micro hydro power plants using extremum seeking control (2015) 2015 IEEE Conference on Control Applications (CCA), pp. 1874-1879
dcterms.bibliographicCitationMa, C., Liu, C., Zhang, X., Sun, Y., Wu, W., Xie, J., Fixed-time stability of the hydraulic turbine governing system (2018) Math. Probl. Eng., 2018
dcterms.bibliographicCitationGil-González, W., Garces, A., Escobar, A., Passivity-based control and stability analysis for hydro-turbine governing systems (2019) Appl. Math. Modell., 68, pp. 471-486
dcterms.bibliographicCitationNageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuška, R., Port-Hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238
dcterms.bibliographicCitationOrtega, R., van der Schaft, A., Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119
dcterms.bibliographicCitationMachowski, J., Bialek, J.W., Bumby, J.R., Power System Dynamics: Stability and Control (2008), 2nd ed. John Wily & Sons
dcterms.bibliographicCitationSenapati, M., Biswal, G.R., Dynamic study of salient pole synchronous hydro generator – turbine set under variable excitation (2015) 2015 Annual IEEE India Conference (INDICON), pp. 1-5
dcterms.bibliographicCitationGil González, W., Garces, A., Fosso, O., Escobar, A., Passivity-based control of power systems considering hydro-turbine with surge tank (2019) IEEE Trans. Power Syst., p. 1
dcterms.bibliographicCitationGiraldo, E., Garces, A., An adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG (2014) IEEE Trans. Power Syst., 29 (3), pp. 1446-1453
dcterms.bibliographicCitationMontoya, O.D., Garces, A., Avila-Becerril, S., Espinosa-Pérez, G., Serra, F.M., Stability analysis of single-phase low-voltage ac microgrids with constant power terminals (2018) IEEE Trans. Circuits Syst., 2. , 1-1
dcterms.bibliographicCitationXu, T., Zhang, L., Zeng, Y., Qian, J., Hamiltonian model of hydro turbine with sharing Sommon conduit (2012) 2012 Asia-Pacific Power and Energy Engineering Conference, pp. 1-5
dcterms.bibliographicCitationvan der Schaft, A., L2-Gain and Passivity Techniques in Nonlinear Control (2017), 3rd ed. Springer International Publishing AG
dcterms.bibliographicCitationMancilla-David, F., Ortega, R., Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems (2012) Control Eng. Pract., 20 (2), pp. 173-181
dcterms.bibliographicCitationOrtega, R., Perez, J.A.L., Nicklasson, P.J., Sira-Ramirez, H.J., Passivity-Based Control of Euler–Lagrange Systems: Mechanical, Electrical and Electromechanical Applications (2013), Springer Science & Business Media
dcterms.bibliographicCitationKhalil, H.K., Nonlinear Systems (2002), Upper Saddle River
dcterms.bibliographicCitationKim, Y.-S., Chung, I.-Y., Moon, S.-I., Tuning of the PI controller parameters of a PMSG wind turbine to improve control performance under various wind speeds (2015) Energies, 8 (2), pp. 1406-1425
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.epsr.2019.106104
dc.subject.keywordsDC microgrid
dc.subject.keywordsPassivity-based control
dc.subject.keywordsReasonable assumptions
dc.subject.keywordsSmall hydro-power plant
dc.subject.keywordsControllers
dc.subject.keywordsHydraulic motors
dc.subject.keywordsHydroelectric power
dc.subject.keywordsPermanent magnets
dc.subject.keywordsRobustness (control systems)
dc.subject.keywordsSynchronous generators
dc.subject.keywordsDc microgrid
dc.subject.keywordsModeling and control
dc.subject.keywordsNon-linear controllers
dc.subject.keywordsPassivity based control
dc.subject.keywordsPermanent magnet synchronous generator
dc.subject.keywordsReasonable assumptions
dc.subject.keywordsSmall hydro power plants
dc.subject.keywordsVoltage source converters
dc.subject.keywordsHydroelectric power plants
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015 , and in part by the Universidad Tecnológica de Bolívar under Project C2018P020.
dc.type.spaArtículo
dc.identifier.orcid57191493648
dc.identifier.orcid56919564100
dc.identifier.orcid36449223500


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/