Show simple item record

dc.creatorKim C.
dc.creatorSenior D.E.
dc.creatorShorey A.
dc.creatorKim H.J.
dc.creatorThomas W.
dc.creatorYoon Y.-K.
dc.date.accessioned2020-03-26T16:32:52Z
dc.date.available2020-03-26T16:32:52Z
dc.date.issued2014
dc.identifier.citationProceedings - Electronic Components and Technology Conference; pp. 1103-1109
dc.identifier.isbn9781479924073
dc.identifier.issn05695503
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9063
dc.description.abstractHigh quality and compact RF devices, using the half mode substrate integrated waveguide (HMSIW) architecture loaded with a complementary split ring resonator (CSRR), are implemented on a glass interposer layer, which therefore serves as an interconnection layer and as a host medium for integrated passive RF components. Compared with the silicon interposer approach, which suffers from large electrical conductivity and therefore substrate loss, the glass interposer has advantages of low substrate loss, allowing high quality interconnection and passive circuits, and low material and manufacturing costs. Corning fusion glass is selected as the substrate to realize the compact CSRR-loaded HMSIW resonators and bandpass filters (BPFs) working under the principle of evanescent wave amplification. Two and three pole bandpass filters are designed for broadband operation at 5.8 GHz. Thru glass vias (TGVs) are used to define the side-wall of the substrate integrated waveguiding structure. Surface micromachining techniques are used to fabricate the proposed devices. The variations of the external quality factor (Qe) of the resonator and the internal coupling coefficient (M) of the coupled resonators are studied for filter design. Operation of the filters at 5.8 GHz with a fractional bandwidth (FBW) of more than 10% for an in-band return loss of better than 20 dB and an low insertion loss of less than 1.35 dB has been obtained, which is not feasible with a usual Si interposer approach. Measurement results are presented from 2 to 10 GHz and show good agreement with simulated ones. © 2014 IEEE.eng
dc.description.sponsorshipIEEE Components, Packaging, and Manufacturing Technology Society (CPMT)
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84907893946&doi=10.1109%2fECTC.2014.6897427&partnerID=40&md5=959d65fd4b1421e1ee83128bbb024cbb
dc.sourceScopus2-s2.0-84907893946
dc.titleThrough-glass interposer integrated high quality RF components
dcterms.bibliographicCitationShorey, A., Pollard, S., Streltsov, A., Piech, G., Wagner, R., Development of substrates featuring through glass vias (TGV) for 3D-IC integration (2012) 61st Electron. Compon. Technol. Conf. (ECTC), , San Diego, CA, May 29-June 1
dcterms.bibliographicCitationSukumaran, V., Bandyopadhyay, T., Chen, Q., Kumbhat, N., Liu, F., Pucha, R., Sato, Y., Tummala, R., Design, fabrication and characterization of low-cost glass interposers with fin-pitch through-package-vias (2011) 61st Electron. Compon. Technol. Conf. (ECTC), , Lake Buena Vista, FL, May 31-June 3
dcterms.bibliographicCitationTopper, M., Ndip, I., Erxleben, R., Brusberg, L., Nissen, N., Schroder, H., Yamamoto, H., Reichl, H., 3-D thin film interposer based on TGV (through glass vias): An alternative to si-interposer (2010) 60th Electron. Compon. Technol. Conf. (ECTC), , Las Vegas, NV, June 1-4
dcterms.bibliographicCitationKim, C., Yoon, Y.-K., High frequency characterization and analytical modeling of through glass via (TGV) for 3D thin-film interposer and MEMS packaging (2013) The 63rd Electron. Compon. Technol. Conf. (ECTC) 2013, , Las Vegas, Nevada, USA, May 28 - May 31
dcterms.bibliographicCitationTeo, T.H., Qian, X., Gopalakrishnan, K.P., Hwan, Y.S., Haridas, K., Pang, C.Y., Cha, H.-K., Je, M., A 700-μW wireless sensor node SoC for continuous real-time health monitoring (2010) IEEE J. of Solid-state Circuits, 45 (11), p. 2292. , 2299, Nov
dcterms.bibliographicCitationAlhawari, M., Khandoker, A., Mohammad, B., Saleh, H., Khalaf, K., Al-Qutayri, M., Yapici, M.K., Ismail, M., Energy efficient system-on-chip architecture for noninvasive mobile monitoring of diabetics (2013) Proc. Int. Con. on Design & Techno. of Integrated Systems in Nanoscale Era (DTIS), 2013 8th, p. 180. , 181, 26-28 March
dcterms.bibliographicCitationBoria, V.E., Gimeno, B., Waveguide filters for satellites (2007) IEEE Microw. Mag., 8 (5), pp. 60-70. , October
dcterms.bibliographicCitationHong, J.S., Lancaster, M.J., (2001) Microstrip Filters for RF/Microwave Applications, , New York: Wiley, ch. 8
dcterms.bibliographicCitationHao, Z.-C., Hong, J.-S., Ultrawideband filter technologies (2010) IEEE, Microw. Mag., 11 (4), pp. 56-68
dcterms.bibliographicCitationWu, Z., Shim, Y., Rais-Zadeh, M., Miniaturized UWB filters integrated with tunable notch filters using a silicon-based integrated passive device technology (2012) IEEE Trans. Microw. Theory and Tech., 60 (3), pp. 518-527. , March
dcterms.bibliographicCitationHsiao, C.-Y., Hsu, S.S.H., Chang, D.-C., A compact V-band bandpass filter in IPD technology (2011) IEEE Microw. Wireless Compon. Lett, 21 (10), pp. 531-533. , Oct
dcterms.bibliographicCitationWu, K., Deslandes, D., Cassivi, Y., The substrate integrated circuits-A new concept for high frequency electronics and optoelectronics (2003) Telecommunications in Modern Satellite Cable and Broadcasting Service Conf., 1, p. PIIIIX. , Oct
dcterms.bibliographicCitationShen, W., Yin, W.-Y., Sun, X.-W., Wu, L.-S., Substrate-integrated waveguide bandpass filters with planar resonators for system-on-package (2013) IEEE Trans. Comp., Packaging and Manufacturing Tech., 3 (2), pp. 253-261. , Feb
dcterms.bibliographicCitationChin, K.S., Chang, C.-C., Chen, C.-H., Guo, Z., Wang, D., Che, W.W., LTCC multilayered substrate-integrated waveguide filter with enhanced frequency selectivity for system-in-package applications (2014) IEEE Trans. Comp., Packaging and Manufacturing Tech., PP (99), p. 1
dcterms.bibliographicCitationChen, X.-P., Wu, K., Substrate integrated waveguide cross-coupled filter with negative coupling structure (2008) IEEE Trans. Microw. Theory and Tech., 56 (1), pp. 142-149. , Jan
dcterms.bibliographicCitationChen, X.-P., Wu, K., Self-packaged millimeter-wave substrate integrated waveguide filter with asymmetric frequency response (2012) IEEE Trans. Comp., Packaging and Manufacturing Tech., 2 (5), pp. 775-782. , May
dcterms.bibliographicCitationLamy, Y.P.R., Jinesh, K.B., Roozeboom, F., Gravesteijn, D.J., Besling, W.F.A., RF characterization and analytical modelling of through silicon vias and coplanar waveguides for 3D integration (2010) IEEE Trans. Advanced Packaging, 33 (4), pp. 1072-1079. , Nov
dcterms.bibliographicCitationWang, Y., Hong, W., Dong, Y., Liu, B., Tang, H.J., Chen, J., Yin, X., Wu, K., Half mode substrate integrated waveguide (HMSIW) bandpass filter (2007) IEEE Microw. Wireless Compon. Lett., 17 (4), pp. 265-267. , April
dcterms.bibliographicCitationZhang, Z., Yang, N., Wu, K., 5-GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless systems (2009) Proc. IEEE Radio and Wireless Sym., pp. 95-98. , Jan
dcterms.bibliographicCitationFalcone, F., Lopetegi, T., Baena, J.D., Marques, R., Martin, F., Sorolla, M., Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators (2004) IEEE Microw. Wireless Compon. Lett., 14 (14), pp. 280-282. , June
dcterms.bibliographicCitationDong, Y.D., Yang, T., Itoh, T., Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters (2009) IEEE Trans. Microw. Theory Tech., 57 (9), pp. 2211-2222. , Sep
dcterms.bibliographicCitationSenior, D.E., Cheng, X., Machado, M., Yoon, Y.-K., Single and dual band bandpass filters using complementary split ring resonator loaded half mode substrate integrated waveguide (2010) 2010 IEEE Antenna Propagation Symposium, , Toronto, Canada, July
dcterms.bibliographicCitationSenior, D.E., Cheng, X., Yoon, Y.-K., Electrically tunable evanescent mode half-mode substrate-integrated-waveguide resonators (2012) IEEE Microw. and Wireless Components Lett., 22 (3), pp. 123-125. , March
dcterms.bibliographicCitationPozar, D.M., (2005) Microwave Engineering, , 3rd ed. New York, Wiley & Sons
dcterms.bibliographicCitationWang, B.K., Chen, Y.-A., Shorey, A., Piech, G., Thin glass substrate development and integration for through glass vias (TGV) with copper (Cu) interconnections (2012) 7th Int. Microsystem, Packaging, Assembly and Circuit Tech. Conf., , Taipei, Thailand, 24-26 Oct
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event64th Electronic Components and Technology Conference, ECTC 2014
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/ECTC.2014.6897427
dc.subject.keywordsBandpass filters
dc.subject.keywordsBandwidth
dc.subject.keywordsGlass
dc.subject.keywordsMicrowave circuits
dc.subject.keywordsOptical resonators
dc.subject.keywordsResonators
dc.subject.keywordsSubstrates
dc.subject.keywordsSurface micromachining
dc.subject.keywordsWaveguides
dc.subject.keywordsBandpass filter (BPFs)
dc.subject.keywordsComplementary split-ring resonator
dc.subject.keywordsElectrical conductivity
dc.subject.keywordsEvanescent wave amplification
dc.subject.keywordsExternal quality factor
dc.subject.keywordsHalf-mode substrate integrated waveguides
dc.subject.keywordsInterconnection layers
dc.subject.keywordsWaveguiding structures
dc.subject.keywordsSubstrate integrated waveguides
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate27 May 2014 through 30 May 2014
dc.type.spaConferencia
dc.identifier.orcid56021218700
dc.identifier.orcid36698427600
dc.identifier.orcid6601969625
dc.identifier.orcid56382312300
dc.identifier.orcid55670976200
dc.identifier.orcid7402126778


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.