Show simple item record

dc.creatorGil-González W.
dc.creatorMontoya O.D.
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:32:52Z
dc.date.available2020-03-26T16:32:52Z
dc.date.issued2019
dc.identifier.citationInternational Journal of Electrical Power and Energy Systems; Vol. 110, pp. 588-597
dc.identifier.issn01420615
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9061
dc.description.abstractThis paper proposes a direct power control (DPC) for a high-voltage direct-current system using voltage source converters (VSC-HVDC) by applying passivity-based control theory. This system allows doing an efficient and reliable integration of electrical network from renewable energy sources. The DPC model permits instantaneous control of the active and reactive power without employing the conventional inner-loop current regulator and the phase-locked loop, thus diminishing investment costs and increasing the reliability of the system. The proportional-integral passivity-based control (PI-PBC) is chosen to control the direct power model of the VSC-HVDC system since this system exhibits a port-Hamiltonian formulation in open-loop and as PI-PBC can exploit this formulation to design a PI controller, which guarantees asymptotically stable in closed-loop based on Lyapunov's theory. Passivity-based control is an active research subject in the control community which has gained a reputation of being a very theoretical subject. Nevertheless, it can have advantages from a practical point of view including an implementation similar to the conventional controls for power systems applications. The paper is oriented to the power & energy systems community, taking into account this practical approach. The proposed controller is assessed by simulations in a two-terminal VSC-HVDC system and compared with a PI direct power controller. Four simulation conditions using MATLAB/SIMULINK were conducted to verify the effectiveness of PI-PBC against a PI controller and a perturbation observer-based adaptive passive control under various operating conditions. © 2019 Elsevier Ltdeng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063466178&doi=10.1016%2fj.ijepes.2019.03.042&partnerID=40&md5=cb941b1ed232743a98282680b044e7f8
dc.titleDirect power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach
dcterms.bibliographicCitationBeerten, J., Cole, S., Belmans, R., Modeling of multi-terminal VSC-HVDC systems with distributed DC voltage control (2014) IEEE Trans Power Syst, 29 (1), pp. 34-42
dcterms.bibliographicCitationZheng, H., Jiang, D., Xu, F., Yiqiao, L., Optimum configuration for AC/DC converters of DC distribution network (2015) Int Trans Electr Energy Syst, 25 (10), pp. 2058-2070
dcterms.bibliographicCitationLiao, S., Yao, W., Han, X., Wen, J., Cheng, S., Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data (2017) Appl Energy, 203, pp. 816-828
dcterms.bibliographicCitationHaruni, A.O., Negnevitsky, M., Haque, M.E., Gargoom, A., A novel operation and control strategy for a standalone hybrid renewable power system (2013) IEEE Trans Sustain Energy, 4 (2), pp. 402-413
dcterms.bibliographicCitationYang, B., Jiang, L., Yu, T., Shu, H., Zhang, C.-K., Yao, W., Passive control design for multi-terminal VSC-HVDC systems via energy shaping (2018) Int J Electr Power Energy Syst, 98, pp. 496-508
dcterms.bibliographicCitationWang, G., Ciobotaru, M., Agelidis, V.G., Power smoothing of large solar PV plant using hybrid energy storage (2014) IEEE Trans Sustain Energy, 5 (3), pp. 834-842
dcterms.bibliographicCitationYang, W., Zhang, A., Li, J., Li, G., Zhang, H., Wang, J., Integral plus resonant sliding mode direct power control for VSC-HVDC systems under unbalanced grid voltage conditions (2017) Energies, 10 (10), p. 1528
dcterms.bibliographicCitationLi, S., Haskew, T.A., Xu, L., Control of HVDC light system using conventional and direct current vector control approaches (2010) IEEE Trans Power Electron, 25 (12), pp. 3106-3118
dcterms.bibliographicCitationGiddani, O., Abbas, A.Y., Adam, G.P., Anaya-Lara, O., Lo, K.L., Multi-task control for VSC-HVDC power and frequency control (2013) Int J Electr Power Energy Syst, 53, pp. 684-690
dcterms.bibliographicCitationMeah, K., Ula, A.S., A new simplified adaptive control scheme for multi-terminal HVDC transmission systems (2010) Int J Electr Power Energy Syst, 32 (4), pp. 243-253
dcterms.bibliographicCitationFuchs, A., Imhof, M., Demiray, T., Morari, M., Stabilization of large power systems using VSC-HVDC and model predictive control (2014) IEEE Trans Power Del, 29 (1), pp. 480-488
dcterms.bibliographicCitationRuan, S.-Y., Li, G.-J., Peng, L., Sun, Y.-Z., Lie, T., A nonlinear control for enhancing HVDC light transmission system stability (2007) Int J Electr Power Energy Syst, 29 (7), pp. 565-570
dcterms.bibliographicCitationRamadan, H.S., Siguerdidjane, H., Petit, M., Kaczmarek, R., Performance enhancement and robustness assessment of VSC-HVDC transmission systems controllers under uncertainties (2012) Int J Electr Power Energy Syst, 35 (1), pp. 34-46
dcterms.bibliographicCitationMoharana, A., Dash, P., Input-output linearization and robust sliding-mode controller for the VSC-HVDC transmission link (2010) IEEE Trans Power Del, 25 (3), pp. 1952-1961
dcterms.bibliographicCitationSchmuck, C., Woittennek, F., Gensior, A., Rudolph, J., Feed-forward control of an HVDC power transmission network (2014) IEEE Trans Control Syst Technol, 22 (2), pp. 597-606
dcterms.bibliographicCitationYang, B., Sang, Y., Shi, K., Yao, W., Jiang, L., Yu, T., Design and real-time implementation of perturbation observer based sliding-mode control for VSC-HVDC systems (2016) Control Eng Pract, 56, pp. 13-26
dcterms.bibliographicCitationZhang, L., Harnefors, L., Nee, H.-P., Interconnection of two very weak AC systems by VSC-HVDC links using power-synchronization control (2011) IEEE Trans Power Syst, 26 (1), pp. 344-355
dcterms.bibliographicCitationBeccuti, G., Papafotiou, G., Harnefors, L., Multivariable optimal control of HVDC transmission links with network parameter estimation for weak grids (2014) IEEE Trans Control Syst Technol, 22 (2), pp. 676-689
dcterms.bibliographicCitationLeon, A.E., Mauricio, J.M., Solsona, J.A., Gomez-Exposito, A., Adaptive control strategy for VSC-based systems under unbalanced network conditions (2010) IEEE Trans Smart Grid, 1 (3), pp. 311-319
dcterms.bibliographicCitationDong, D., Wen, B., Boroyevich, D., Mattavelli, P., Xue, Y., Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions (2015) IEEE Trans Ind Electron, 62 (1), pp. 310-321
dcterms.bibliographicCitationSong, Z., Tian, Y., Yan, Z., Chen, Z., Direct power control for three-phase two-level voltage-source rectifiers based on extended-state observation (2016) IEEE Trans Ind Electron, 63 (7), pp. 4593-4603
dcterms.bibliographicCitationGui, Y., Kim, C., Chung, C.C., Guerrero, J.M., Guan, Y., Vasquez, J.C., Improved direct power control for grid-connected voltage source converters (2018) IEEE Trans Ind Electron, 65 (10), pp. 8041-8051
dcterms.bibliographicCitationYang, B., Jiang, L., Yao, W., Wu, Q., Perturbation observer based adaptive passive control for damping improvement of multi-terminal voltage source converter-based high voltage direct current systems (2017) Trans Inst Meas Control, 39 (9), pp. 1409-1420
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng Pract, 43, pp. 109-119
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J Energy Storage, 17, pp. 261-271
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garces, A., Control of a SMES for mitigating subsynchronous oscillations in power systems: a PBC-PI approach (2018) J Energy Storage, 20, pp. 163-172
dcterms.bibliographicCitationZonetti, D., Ortega, R., Benchaib, A., A globally asymptotically stable decentralized PI controller for multi-terminal high-voltage DC transmission systems (2014) 2014 European control conference (ECC), pp. 1397-1403. , IEEE
dcterms.bibliographicCitationTrip, S., Persis, C.D., Distributed optimal load frequency control with non-passive dynamics (2018) IEEE Trans Control Netw Syst, 5 (3), pp. 1232-1244
dcterms.bibliographicCitationHernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F., Escobar, G., Adaptive PI stabilization of switched power converters (2010) IEEE Trans Control Syst Technol, 18 (3), pp. 688-698
dcterms.bibliographicCitationZonetti, D., Ortega, R., Benchaib, A., Modeling and control of HVDC transmission systems from theory to practice and back (2015) Control Eng Pract, 45, pp. 133-146
dcterms.bibliographicCitationBergna-Diaz, G., Zonetti, D., Sanchez, S., Ortega, R., Tedeschi, E., Pi passivity-based control and performance analysis of mmc multi-terminal hvdc systems (2018) IEEE J Emerg Sel Top Power Electron, p. 1
dcterms.bibliographicCitationZonetti, D., Energy-based modelling and control of electric power systems with guaranteed stability properties (2016), [Ph.D. thesis]. Université Paris-Saclay
dcterms.bibliographicCitationYang, B., Yu, T., Zhang, X., Huang, L., Shu, H., Jiang, L., Interactive teaching-learning optimiser for parameter tuning of VSC-HVDC systems with offshore wind farm integration (2017) IET Gener Transmiss Distrib, 12 (3), pp. 678-687
dcterms.bibliographicCitationYang, B., Jiang, L., Wang, L., Yao, W., Wu, Q., Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine (2016) Int J Electr Power Energy Syst, 74, pp. 429-436
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.ijepes.2019.03.042
dc.subject.keywordsDirect power control
dc.subject.keywordsPassivity theory
dc.subject.keywordsProportional-integral passivity-based control
dc.subject.keywordsVoltage source converter high voltage direct current
dc.subject.keywordsControl theory
dc.subject.keywordsControllers
dc.subject.keywordsHamiltonians
dc.subject.keywordsHVDC power transmission
dc.subject.keywordsInvestments
dc.subject.keywordsMATLAB
dc.subject.keywordsRenewable energy resources
dc.subject.keywordsTwo term control systems
dc.subject.keywordsActive and Reactive Power
dc.subject.keywordsDirect power control
dc.subject.keywordsHigh voltage direct current
dc.subject.keywordsHigh voltage direct current systems
dc.subject.keywordsPassivity based control
dc.subject.keywordsPassivity theory
dc.subject.keywordsPower systems application
dc.subject.keywordsVoltage source converters
dc.subject.keywordsPower control
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid57191493648
dc.identifier.orcid56919564100
dc.identifier.orcid36449223500


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.