Show simple item record

Programmable diffractive lens for ophthalmic application

dc.creatorMillán M.S.
dc.creatorPérez-Cabré E.
dc.creatorRomero L.A.
dc.creatorRamírez N.
dc.identifier.citationOptical Engineering; Vol. 53, Núm. 6
dc.description.abstractPixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided. © 2014 Society of Photo-Optical Instrumentation Engineers.eng
dc.description.sponsorshipMinisterio de Ciencia e Innovación, MICINN Federación Española de Enfermedades Raras, FEDER: DPI2009-08879
dc.format.mediumRecurso electrónico
dc.titleProgrammable diffractive lens for ophthalmic application
dcterms.bibliographicCitationLaude, V., Twisted-nematic liquid-crystal pixelated active lens (1998) Optics Communications, 153 (1-3), pp. 134-152. , PII S0030401898001436
dcterms.bibliographicCitationDavis, J.A., Fresnel lens-encoded binary phase-only filters for optical pattern recognition (1989) Opt. Lett., 14 (13), pp. 659-661
dcterms.bibliographicCitationFukuchi, N., Lensless vanderlugt optical correlator using two phase-only spatial light modulators (2009) Chin. Opt. Lett., 7 (12), pp. 1-3
dcterms.bibliographicCitationZeng, X., Compact optical correlator based on one phase-only spatial light modulator (2011) Opt. Lett., 36 (8), pp. 1383-1385
dcterms.bibliographicCitationMillan, M.S., Oton, J., Perez-Cabre, E., Dynamic compensation of chromatic aberration in a programmable diffractive lens (2006) Optics Express, 14 (20), pp. 9103-9112. , CA9AF06F058CFF4A_9103.pdf?da=1&id=114588&seq=0&CFID= 32166241&CFTOKEN=73793471, DOI 10.1364/OE.14.009103
dcterms.bibliographicCitationAtchison, D.A., Spectacle lens design: A review (1992) Appl. Opt., 31 (19), pp. 3579-3585
dcterms.bibliographicCitationFowler, C.W., Pateras, E.S., Liquid crystal lens review (1990) Ophthalmic and Physiological Optics, 10 (2), pp. 186-194
dcterms.bibliographicCitationThibos, L.N., Bradley, A., Use of liquid-crystal adaptive-optics to alter the refractive state of the eye (1997) Optometry and Vision Science, 74 (7), pp. 581-587. , DOI 10.1097/00006324-199707000-00028
dcterms.bibliographicCitationLi, G., Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications (2006) Proc. Natl. Acad. Sci. U. S. A., 103 (16), pp. 6100-6104
dcterms.bibliographicCitation(2013),, Coastal Vision website: (19 December)
dcterms.bibliographicCitationManzanera, S., Prieto, P.M., Ayala, D.B., Lindacher, J.M., Artal, P., Liquid crystal adaptive optics visual simulator: Application to testing and design of ophthalmic optical elements (2007) Optics Express, 15 (24), pp. 16177-16188. , CE45809FB95C4C38_146452.pdf?da=1&id=146452&seq=0&CFID= 4949129&CFTOKEN=68360138, DOI 10.1364/OE.15.016177
dcterms.bibliographicCitationFernández, E.J., Prieto, P.M., Artal, P., Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator (2009) Opt. Express, 17 (13), pp. 11013-11025
dcterms.bibliographicCitationSchwarz, C., Binocular adaptive optics vision analyzer with full control over the complex pupil functions (2011) Opt. Lett., 36 (24), pp. 4779-4781
dcterms.bibliographicCitation(2013),, Holoeye website: (1 October)
dcterms.bibliographicCitationSmith, G., Refraction and visual acuity measurements: What are their measurement uncertainties? (2006) Clin. Exp. Optometry, 89 (2), pp. 66-72
dcterms.bibliographicCitationOtón, J., Millán, M.S., Pérez-Cabré, E., Programmable lens design in a pixelated screen of twisted-nematic liquid crystal display (2005) Opt. Pura Apl., 38 (2), pp. 47-56
dcterms.bibliographicCitationOtón, J., Imaging characteristics of programmable lenses generated by SLM (2006) CP860, Information Optics: 5th Int. Workshop, pp. 471-480. , G. Cristóbal, B. Javidi, and S. Vallmitjana, Eds., American Institute of Physics, Toledo, Spain
dcterms.bibliographicCitation(1999) Intraocular Lenses. Part 2: Optical Properties and Test Methods, , International Organization for Standardization (ISO), ISO 11979-2 Ophthalmic Implants, Geneva, Switzerland
dcterms.bibliographicCitationNorrby, S., Piers, P., Campbell, C., Van Der Mooren, M., Model eyes for evaluation of intraocular lenses (2007) Applied Optics, 46 (26), pp. 6595-6605. , DOI 10.1364/AO.46.006595
dcterms.bibliographicCitationRabbets, R.B., (2007) Bennett & Rabbets' Clinical Visual Optics, , 4th ed., Butterworth-Heinemann Elsevier, Edinburgh
dcterms.bibliographicCitationOton, J., Ambs, P., Millan, M.S., Perez-Cabre, E., Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays (2007) Applied Optics, 46 (23), pp. 5667-5679. , DOI 10.1364/AO.46.005667
dcterms.bibliographicCitationMárquez, A., Achromatic diffractive lens written onto a liquid crystal display (2006) Opt. Lett., 31 (3), pp. 392-394
dcterms.bibliographicCitationMillán, M.S., Otón, J., Pérez-Cabré, E., Chromatic compensation of programmable Fresnel lenses (2006) Opt. Express, 14 (13), pp. 6226-6242
dcterms.bibliographicCitationRomero, L.A., Double peacock eye optical element for extended focal depth imaging with ophthalmic applications (2012) J. Biomed. Opt., 17 (4), p. 046013
dc.subject.keywordsDiffractive optical element
dc.subject.keywordsLiquid crystal display
dc.subject.keywordsOphthalmic lens
dc.subject.keywordsProgrammable lens
dc.subject.keywordsSpatial light modulator
dc.subject.keywordsVisual ametropia compensation
dc.subject.keywordsDensity (optical)
dc.subject.keywordsDiffractive optical elements
dc.subject.keywordsGeometrical optics
dc.subject.keywordsLight modulation
dc.subject.keywordsLight modulators
dc.subject.keywordsLiquid crystal displays
dc.subject.keywordsCompensation precision
dc.subject.keywordsInformation optics
dc.subject.keywordsLiquid crystal on silicon spatial light modulators
dc.subject.keywordsOphthalmic lens
dc.subject.keywordsOptical processors
dc.subject.keywordsParaxial ray tracing
dc.subject.keywordsProgrammable lens
dc.subject.keywordsSpatial light modulators
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis research has been partly funded by the Spanish Ministerio de Ciencia e Innovación and FEDER (Project DPI2009-08879).

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as