Mostrar el registro sencillo del ítem
Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications
dc.creator | Senior D.E. | |
dc.creator | Rahimi A. | |
dc.creator | Jao, P.F. | |
dc.creator | Yoon, Y.K. | |
dc.date.accessioned | 2020-03-26T16:32:51Z | |
dc.date.available | 2020-03-26T16:32:51Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Proceedings - Electronic Components and Technology Conference; pp. 789-795 | |
dc.identifier.isbn | 9781479924073 | |
dc.identifier.issn | 05695503 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9056 | |
dc.description.abstract | In this paper the flexible Liquid Crystal Polymer (LCP) substrate is used to implement broadband wearable/foldable conformal bandpass filters that use compact cavity resonators working under the principle of quarter mode substrate integrated waveguide (QMSIW), which features a 75% size reduction with respect to the conventional substrate integrated waveguide (SIW) counterpart. Further size reduction is realized with the use of a complementary split ring resonator (CSRR) metamaterial unit cell integrated with the QMSIW architecture. The resulting CSRR-loaded QMSIW cavity has its main resonance frequency below the quasi-TE<inf>0.5,0,0.5</inf> resonance mode of the original QMSIW cavity due to the evanescent wave amplification phenomenon with CSRR loading. A low temperature surface micromachining process on the LCP and mechanical drilling of via holes are used for fabrication. The realized CSRR-loaded QMSIW cavity features a moderate quality factor (Q) that makes it useful for the design of bandpass filters with much broader fractional bandwidth (FBW) when compared to those using conventional SIW cavities. A 2nd order and a 3rd order surface micromachined Chebyshev BPFs are demonstrated for operation at a center frequency of 25.5 GHz. More than 11% FBW with an in-band return loss of better than 20 dB and an insertion loss of less than 1.5 dB, including transitions, are obtained for both filters. Theoretical analysis of the working principle is explained. Measured results are in good agreement with the 3D full wave structure simulations. © 2014 IEEE. | eng |
dc.description.sponsorship | IEEE Components, Packaging, and Manufacturing Technology Society (CPMT) | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907907384&doi=10.1109%2fECTC.2014.6897375&partnerID=40&md5=e99e876d4b80d420572df399b85bc0dd | |
dc.source | Scopus2-s2.0-84907907384 | |
dc.title | Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications | |
dcterms.bibliographicCitation | Yuce, M.R., Ho, C.K., Moo, S.C., Wideband communication for implantable and wearable systems (2009) IEEE Trans. Microwave Theory and Techniques, 57 (10), p. 2597. , 2604, Oct | |
dcterms.bibliographicCitation | Zhewang, M., Ohira, M., Chen, C.P., Anada, T., A novel compact high-performance microstrip 26 GHz ultrawideband (UWB) bandpass filter for vehicle radar systems (2012) Proc. IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), p. 1. , 4, 18-20 Sept | |
dcterms.bibliographicCitation | Jain, V., Sundararaman, S., Heydari, P., A 22-29-GHz UWB pulse-radar receiver front-end in 0.18-μm CMOS (2009) IEEE Trans. Microwave Theory and Techniques, 57 (8), p. 1903. , 1914, Aug | |
dcterms.bibliographicCitation | Teo, T.H., Qian, X., Gopalakrishnan, K.P., Hwan, Y.S., Haridas, K., Pang, C.Y., Cha, H.-K., Je, M., A 700-μ W wireless sensor node SoC for continuous real-time health monitoring (2010) IEEE Journal of Solid-state Circuits, 45 (11), p. 2292. , 2299, Nov | |
dcterms.bibliographicCitation | Alhawari, M., Khandoker, A., Mohammad, B., Saleh, H., Khalaf, K., Al-Qutayri, M., Yapici, M.K., Ismail, M., Energy efficient system-on-chip architecture for noninvasive mobile monitoring of diabetics (2013) Proc. Interational Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2013 8th, p. 180. , 181, 26-28 March | |
dcterms.bibliographicCitation | Torfs, T., Sterken, T., Brebels, S., Santana, J., Van Den Hoven, R., Spiering, V., Bertsch, N., Zonta, D., Low power wireless sensor network for building monitoring (2013) IEEE Sensors Journal, 13 (3), p. 909. , 915, March | |
dcterms.bibliographicCitation | Brown, L., Grundlehner, B., Van De Molengraft, J., Penders, J., Gyselinckx, B., Body area network for monitoring autonomic nervous system responses (2009) Proc. 3rd International Conference on Pervasive Computing Technologies for Healthcare, 2009. PervasiveHealth 2009., p. 1. , 3, 1-3 April | |
dcterms.bibliographicCitation | Kim, C., (2010) Chapter 2. Ultra-wideband Antenna in Microwave and Millimeter Wave Technologies Modern UWB Antennas and Equipment, , IN-TECH, March | |
dcterms.bibliographicCitation | Hao, Z.-C., Hong, J.-S., Parry, J.P., Hand, D.P., Ultra-wideband bandpass filter with multiple notch bands using nonuniform periodical slotted ground structure (2009) IEEE Trans. Microwave Theory and Techniques, 57 (12), p. 3080. , 3088, Dec | |
dcterms.bibliographicCitation | Yang, G.-M., Jin, R., Vittoria, C., Harris, V.G., Sun, N.X., Small ultra-wideband (UWB) bandpass filter with notched band (2008) IEEE Microwave and Wireless Components Letters, 18 (3), p. 176. , 178, March | |
dcterms.bibliographicCitation | Chen, K.-R., Sim, C.-Y.-D., Row, J.-S., A compact monopole antenna for super wideband applications (2011) IEEE Antennas Wireless Propag. Lett., 10, pp. 488-491 | |
dcterms.bibliographicCitation | Zhang, X., Karnfelt, C., Liu, J., Ma, S., Xu, W., Meng, L., Zirath, H., Realization of ultra wideband bandpass filter based on LCP substrate for wireless application (2007) Proc. International Symposium on High Density Packaging and Microsystem Integration, 2007. HDP'07, p. 1. , 5, 26-28 June | |
dcterms.bibliographicCitation | Kim, C., Kim, J.K., Kim, K.T., Yoon, Y.-K., Micromachined wearable/foldable super wideband (SWA) monopole antenna based on a flexible liquid crystal polymer (LCP) substrate toward imaging/sensing/health monitoring systems (2013) Proce. IEEE Electronic Components and Technology Conference (ECTC), p. 1926. , Las Vegas, NV, 1932, 28-31 May | |
dcterms.bibliographicCitation | Alomainy, A., Sani, A., Rahman, A., Santas, J.G., Hao, Y., Transient characteristics of wearable antennas and radio propagation channels for ultrawideband body-centric wireless communications (2009) IEEE Trans. Antennas and Propagation, 57 (4), p. 875. , 884, April | |
dcterms.bibliographicCitation | Yarovoy, A., Ultra-wideband radars for high-resolution imaging and target classification (2007) Proc. 4th European Radar Conference (EuRAD), , Munich, Germany, Oct. 10-12 | |
dcterms.bibliographicCitation | Ye, S., Zhou, B., Fang, G., Design of a novel ultrawideband digital receiver for pulse ground penetrating radar (2011) IEEE Geosci. Remote Sens. Lett., 8 (4), pp. 656-660. , July | |
dcterms.bibliographicCitation | Hong, J.S., Lancaster, M.J., (2001) Microstrip Filters for RF/Microwave Applications, p. 8. , New York: Wiley | |
dcterms.bibliographicCitation | Hao, Z.-C., Hong, J.-S., Ultrawideband filter technologies (2010) IEEE, Microwave Magazine, 11 (4), pp. 56-68 | |
dcterms.bibliographicCitation | Zhu, L., Sun, S., Menzel, W., Ultra-wideband (UWB) bandpass filter using multiple-mode resonator (2005) IEEE Microw. Wireless Compon. Lett., 15 (11), pp. 796-798. , Nov | |
dcterms.bibliographicCitation | Chien, H., Shen, T., Huang, T., Wang, W., Wu, R., Miniaturized bandpass filters with double-folded substrate integrated waveguide resonators in LTCC (2009) IEEE Trans. Microwave Theory & Tech, 57 (7), p. 1774. , 1782, July | |
dcterms.bibliographicCitation | Duong, T.H., Kim, I.S., New elliptic funtion type UWB BPF based on capacitively coupled λ/4 open t resonator (2009) IEEE Trans. Microw. Theory Tech., 57 (12), pp. 3089-3098. , Dec | |
dcterms.bibliographicCitation | Zhang, T.T., Johnson, W., Farrell, B., St. Lawrence, M., The processing and assembly of liquid crystalline polymer printed circuits (2002) 2002 in Proc. Int. Symp. on Microelectronics | |
dcterms.bibliographicCitation | Thompson, D.C., Tantot, O., Jallageas, H., Ponchak, G.E., Tentzeris, M.M., Papapolymerou, J., Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30-110 GHz (2004) IEEE Trans. Microw. Theory Tech., 52 (4), pp. 1343-1352. , Apr | |
dcterms.bibliographicCitation | Davis, M.F., Yoon, S.-W., Pinel, S., Lim, K., Laskar, J., Liquid crystal polymer-based integrated passive development for RF applications (2003) Proc. IEEE Int. Microwave Symp., 2, pp. 1155-1158 | |
dcterms.bibliographicCitation | Wu, K., Deslandes, D., Cassivi, Y., The substrate integrated circuits-A new concept for high frequency electronics and optoelectronics (2003) Proc. Conference on Telecommunications in Modern Satellite Cable and Broadcasting Service, 1, pp. III-IX. , Oct | |
dcterms.bibliographicCitation | Senior, D.E., (2012) Advanced Metamaterial Circuits for Microwave and Millimeter Wave Applications, , PhD Dissertation. Gainesville, FL. University of Florida | |
dcterms.bibliographicCitation | Dong, Y., Itoh, T., Promising future of metamaterials (2012) IEEE Microwave Magazine, 13 (2), p. 39. , 56, March-April | |
dcterms.bibliographicCitation | Zhang, Z., Yang, N., Wu, K., 5-GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless systems (2009) Proc. IEEE Radio and Wireless Symposium, pp. 95-98. , Jan | |
dcterms.bibliographicCitation | Zhang, S., Bian, T., Zhai, Y., Liu, W., Yang, G., Liu, F., Quarter substrate integrated waveguide resonator applied to fractal-shaped BPFs (2012) Microw. Journal, 55 (5), pp. 200-208. , May | |
dcterms.bibliographicCitation | Pozar, D.M., (2005) Microwave Engineering, , 3d, ed. New York, Wiley & Sons | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 64th Electronic Components and Technology Conference, ECTC 2014 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1109/ECTC.2014.6897375 | |
dc.subject.keywords | Bandpass filters | |
dc.subject.keywords | Bandwidth | |
dc.subject.keywords | Crystal filters | |
dc.subject.keywords | Liquid crystal polymers | |
dc.subject.keywords | Liquid crystals | |
dc.subject.keywords | Loading | |
dc.subject.keywords | Low temperature effects | |
dc.subject.keywords | Metal drawing | |
dc.subject.keywords | Micromachining | |
dc.subject.keywords | Microwave circuits | |
dc.subject.keywords | Optical resonators | |
dc.subject.keywords | Ring gages | |
dc.subject.keywords | Size determination | |
dc.subject.keywords | Substrates | |
dc.subject.keywords | Surface micromachining | |
dc.subject.keywords | Temperature | |
dc.subject.keywords | Waveguide filters | |
dc.subject.keywords | Waveguides | |
dc.subject.keywords | Wearable technology | |
dc.subject.keywords | Complementary split ring resonators | |
dc.subject.keywords | Complementary split-ring resonator | |
dc.subject.keywords | Evanescent wave amplification | |
dc.subject.keywords | Fractional bandwidths | |
dc.subject.keywords | Liquid crystal polymer substrate (LCP) | |
dc.subject.keywords | Measured results | |
dc.subject.keywords | Mechanical drilling | |
dc.subject.keywords | Surface micromachining process | |
dc.subject.keywords | Substrate integrated waveguides | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.relation.conferencedate | 27 May 2014 through 30 May 2014 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 36698427600 | |
dc.identifier.orcid | 56297560700 | |
dc.identifier.orcid | 36698143800 | |
dc.identifier.orcid | 7402126778 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1475]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.