Mostrar el registro sencillo del ítem

dc.creatorSenior D.E.
dc.creatorRahimi A.
dc.creatorJao, P.F.
dc.creatorYoon, Y.K.
dc.date.accessioned2020-03-26T16:32:51Z
dc.date.available2020-03-26T16:32:51Z
dc.date.issued2014
dc.identifier.citationProceedings - Electronic Components and Technology Conference; pp. 789-795
dc.identifier.isbn9781479924073
dc.identifier.issn05695503
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9056
dc.description.abstractIn this paper the flexible Liquid Crystal Polymer (LCP) substrate is used to implement broadband wearable/foldable conformal bandpass filters that use compact cavity resonators working under the principle of quarter mode substrate integrated waveguide (QMSIW), which features a 75% size reduction with respect to the conventional substrate integrated waveguide (SIW) counterpart. Further size reduction is realized with the use of a complementary split ring resonator (CSRR) metamaterial unit cell integrated with the QMSIW architecture. The resulting CSRR-loaded QMSIW cavity has its main resonance frequency below the quasi-TE<inf>0.5,0,0.5</inf> resonance mode of the original QMSIW cavity due to the evanescent wave amplification phenomenon with CSRR loading. A low temperature surface micromachining process on the LCP and mechanical drilling of via holes are used for fabrication. The realized CSRR-loaded QMSIW cavity features a moderate quality factor (Q) that makes it useful for the design of bandpass filters with much broader fractional bandwidth (FBW) when compared to those using conventional SIW cavities. A 2nd order and a 3rd order surface micromachined Chebyshev BPFs are demonstrated for operation at a center frequency of 25.5 GHz. More than 11% FBW with an in-band return loss of better than 20 dB and an insertion loss of less than 1.5 dB, including transitions, are obtained for both filters. Theoretical analysis of the working principle is explained. Measured results are in good agreement with the 3D full wave structure simulations. © 2014 IEEE.eng
dc.description.sponsorshipIEEE Components, Packaging, and Manufacturing Technology Society (CPMT)
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84907907384&doi=10.1109%2fECTC.2014.6897375&partnerID=40&md5=e99e876d4b80d420572df399b85bc0dd
dc.sourceScopus2-s2.0-84907907384
dc.titleFlexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications
dcterms.bibliographicCitationYuce, M.R., Ho, C.K., Moo, S.C., Wideband communication for implantable and wearable systems (2009) IEEE Trans. Microwave Theory and Techniques, 57 (10), p. 2597. , 2604, Oct
dcterms.bibliographicCitationZhewang, M., Ohira, M., Chen, C.P., Anada, T., A novel compact high-performance microstrip 26 GHz ultrawideband (UWB) bandpass filter for vehicle radar systems (2012) Proc. IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), p. 1. , 4, 18-20 Sept
dcterms.bibliographicCitationJain, V., Sundararaman, S., Heydari, P., A 22-29-GHz UWB pulse-radar receiver front-end in 0.18-μm CMOS (2009) IEEE Trans. Microwave Theory and Techniques, 57 (8), p. 1903. , 1914, Aug
dcterms.bibliographicCitationTeo, T.H., Qian, X., Gopalakrishnan, K.P., Hwan, Y.S., Haridas, K., Pang, C.Y., Cha, H.-K., Je, M., A 700-μ W wireless sensor node SoC for continuous real-time health monitoring (2010) IEEE Journal of Solid-state Circuits, 45 (11), p. 2292. , 2299, Nov
dcterms.bibliographicCitationAlhawari, M., Khandoker, A., Mohammad, B., Saleh, H., Khalaf, K., Al-Qutayri, M., Yapici, M.K., Ismail, M., Energy efficient system-on-chip architecture for noninvasive mobile monitoring of diabetics (2013) Proc. Interational Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2013 8th, p. 180. , 181, 26-28 March
dcterms.bibliographicCitationTorfs, T., Sterken, T., Brebels, S., Santana, J., Van Den Hoven, R., Spiering, V., Bertsch, N., Zonta, D., Low power wireless sensor network for building monitoring (2013) IEEE Sensors Journal, 13 (3), p. 909. , 915, March
dcterms.bibliographicCitationBrown, L., Grundlehner, B., Van De Molengraft, J., Penders, J., Gyselinckx, B., Body area network for monitoring autonomic nervous system responses (2009) Proc. 3rd International Conference on Pervasive Computing Technologies for Healthcare, 2009. PervasiveHealth 2009., p. 1. , 3, 1-3 April
dcterms.bibliographicCitationKim, C., (2010) Chapter 2. Ultra-wideband Antenna in Microwave and Millimeter Wave Technologies Modern UWB Antennas and Equipment, , IN-TECH, March
dcterms.bibliographicCitationHao, Z.-C., Hong, J.-S., Parry, J.P., Hand, D.P., Ultra-wideband bandpass filter with multiple notch bands using nonuniform periodical slotted ground structure (2009) IEEE Trans. Microwave Theory and Techniques, 57 (12), p. 3080. , 3088, Dec
dcterms.bibliographicCitationYang, G.-M., Jin, R., Vittoria, C., Harris, V.G., Sun, N.X., Small ultra-wideband (UWB) bandpass filter with notched band (2008) IEEE Microwave and Wireless Components Letters, 18 (3), p. 176. , 178, March
dcterms.bibliographicCitationChen, K.-R., Sim, C.-Y.-D., Row, J.-S., A compact monopole antenna for super wideband applications (2011) IEEE Antennas Wireless Propag. Lett., 10, pp. 488-491
dcterms.bibliographicCitationZhang, X., Karnfelt, C., Liu, J., Ma, S., Xu, W., Meng, L., Zirath, H., Realization of ultra wideband bandpass filter based on LCP substrate for wireless application (2007) Proc. International Symposium on High Density Packaging and Microsystem Integration, 2007. HDP'07, p. 1. , 5, 26-28 June
dcterms.bibliographicCitationKim, C., Kim, J.K., Kim, K.T., Yoon, Y.-K., Micromachined wearable/foldable super wideband (SWA) monopole antenna based on a flexible liquid crystal polymer (LCP) substrate toward imaging/sensing/health monitoring systems (2013) Proce. IEEE Electronic Components and Technology Conference (ECTC), p. 1926. , Las Vegas, NV, 1932, 28-31 May
dcterms.bibliographicCitationAlomainy, A., Sani, A., Rahman, A., Santas, J.G., Hao, Y., Transient characteristics of wearable antennas and radio propagation channels for ultrawideband body-centric wireless communications (2009) IEEE Trans. Antennas and Propagation, 57 (4), p. 875. , 884, April
dcterms.bibliographicCitationYarovoy, A., Ultra-wideband radars for high-resolution imaging and target classification (2007) Proc. 4th European Radar Conference (EuRAD), , Munich, Germany, Oct. 10-12
dcterms.bibliographicCitationYe, S., Zhou, B., Fang, G., Design of a novel ultrawideband digital receiver for pulse ground penetrating radar (2011) IEEE Geosci. Remote Sens. Lett., 8 (4), pp. 656-660. , July
dcterms.bibliographicCitationHong, J.S., Lancaster, M.J., (2001) Microstrip Filters for RF/Microwave Applications, p. 8. , New York: Wiley
dcterms.bibliographicCitationHao, Z.-C., Hong, J.-S., Ultrawideband filter technologies (2010) IEEE, Microwave Magazine, 11 (4), pp. 56-68
dcterms.bibliographicCitationZhu, L., Sun, S., Menzel, W., Ultra-wideband (UWB) bandpass filter using multiple-mode resonator (2005) IEEE Microw. Wireless Compon. Lett., 15 (11), pp. 796-798. , Nov
dcterms.bibliographicCitationChien, H., Shen, T., Huang, T., Wang, W., Wu, R., Miniaturized bandpass filters with double-folded substrate integrated waveguide resonators in LTCC (2009) IEEE Trans. Microwave Theory & Tech, 57 (7), p. 1774. , 1782, July
dcterms.bibliographicCitationDuong, T.H., Kim, I.S., New elliptic funtion type UWB BPF based on capacitively coupled λ/4 open t resonator (2009) IEEE Trans. Microw. Theory Tech., 57 (12), pp. 3089-3098. , Dec
dcterms.bibliographicCitationZhang, T.T., Johnson, W., Farrell, B., St. Lawrence, M., The processing and assembly of liquid crystalline polymer printed circuits (2002) 2002 in Proc. Int. Symp. on Microelectronics
dcterms.bibliographicCitationThompson, D.C., Tantot, O., Jallageas, H., Ponchak, G.E., Tentzeris, M.M., Papapolymerou, J., Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30-110 GHz (2004) IEEE Trans. Microw. Theory Tech., 52 (4), pp. 1343-1352. , Apr
dcterms.bibliographicCitationDavis, M.F., Yoon, S.-W., Pinel, S., Lim, K., Laskar, J., Liquid crystal polymer-based integrated passive development for RF applications (2003) Proc. IEEE Int. Microwave Symp., 2, pp. 1155-1158
dcterms.bibliographicCitationWu, K., Deslandes, D., Cassivi, Y., The substrate integrated circuits-A new concept for high frequency electronics and optoelectronics (2003) Proc. Conference on Telecommunications in Modern Satellite Cable and Broadcasting Service, 1, pp. III-IX. , Oct
dcterms.bibliographicCitationSenior, D.E., (2012) Advanced Metamaterial Circuits for Microwave and Millimeter Wave Applications, , PhD Dissertation. Gainesville, FL. University of Florida
dcterms.bibliographicCitationDong, Y., Itoh, T., Promising future of metamaterials (2012) IEEE Microwave Magazine, 13 (2), p. 39. , 56, March-April
dcterms.bibliographicCitationZhang, Z., Yang, N., Wu, K., 5-GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless systems (2009) Proc. IEEE Radio and Wireless Symposium, pp. 95-98. , Jan
dcterms.bibliographicCitationZhang, S., Bian, T., Zhai, Y., Liu, W., Yang, G., Liu, F., Quarter substrate integrated waveguide resonator applied to fractal-shaped BPFs (2012) Microw. Journal, 55 (5), pp. 200-208. , May
dcterms.bibliographicCitationPozar, D.M., (2005) Microwave Engineering, , 3d, ed. New York, Wiley & Sons
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event64th Electronic Components and Technology Conference, ECTC 2014
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/ECTC.2014.6897375
dc.subject.keywordsBandpass filters
dc.subject.keywordsBandwidth
dc.subject.keywordsCrystal filters
dc.subject.keywordsLiquid crystal polymers
dc.subject.keywordsLiquid crystals
dc.subject.keywordsLoading
dc.subject.keywordsLow temperature effects
dc.subject.keywordsMetal drawing
dc.subject.keywordsMicromachining
dc.subject.keywordsMicrowave circuits
dc.subject.keywordsOptical resonators
dc.subject.keywordsRing gages
dc.subject.keywordsSize determination
dc.subject.keywordsSubstrates
dc.subject.keywordsSurface micromachining
dc.subject.keywordsTemperature
dc.subject.keywordsWaveguide filters
dc.subject.keywordsWaveguides
dc.subject.keywordsWearable technology
dc.subject.keywordsComplementary split ring resonators
dc.subject.keywordsComplementary split-ring resonator
dc.subject.keywordsEvanescent wave amplification
dc.subject.keywordsFractional bandwidths
dc.subject.keywordsLiquid crystal polymer substrate (LCP)
dc.subject.keywordsMeasured results
dc.subject.keywordsMechanical drilling
dc.subject.keywordsSurface micromachining process
dc.subject.keywordsSubstrate integrated waveguides
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate27 May 2014 through 30 May 2014
dc.type.spaConferencia
dc.identifier.orcid36698427600
dc.identifier.orcid56297560700
dc.identifier.orcid36698143800
dc.identifier.orcid7402126778


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.