Mostrar el registro sencillo del ítem

dc.creatorContreras Ortiz, Sonia Helena
dc.creatorFox M.D.
dc.date.accessioned2020-03-26T16:32:51Z
dc.date.available2020-03-26T16:32:51Z
dc.date.issued2014
dc.identifier.citationJournal of Electronic Imaging; Vol. 23, Núm. 4
dc.identifier.issn10179909
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9055
dc.description.abstractMost of the devices for acquisition and display of medical images use rectangular lattices even though there are other sampling strategies that can be more efficient in terms of resolution. This paper proposes an approach for ultrasound image enhancement that uses a hexagonal sampling scheme to display and process the images. The images were resampled on an interlaced grid. Interlaced sampling uses square pixels shifted half a pixel on alternate rows. Two types of hexagonal filters were designed and tested on ultrasound images: a statistical adaptive filter and an anisotropic diffusion filter. Results show improvements in signal-to-noise ratio and more natural representation of curved structures. © 2014 SPIE and IS&T.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84922977871&doi=10.1117%2f1.JEI.23.4.043022&partnerID=40&md5=48710a119f4b45a04a29ab9320dbb241
dc.titleHexagonal filters for ultrasound images
dcterms.bibliographicCitationMersereau, R.M., The processing of hexagonally sampled two-dimensional signals (1979) Proc. IEEE, 67 (6), pp. 930-949
dcterms.bibliographicCitationEhrhardt, J.C., MR data acquisition and reconstruction using efficient sampling schemes (1990) IEEE Trans. Med. Imaging, 9 (3), pp. 305-309
dcterms.bibliographicCitationRattey, P.A., Lindgren, A.G., Sampling the 2-D radon transform (1981) IEEE Trans. Acoust. Speech Signal Process., 29 (5), pp. 994-1002
dcterms.bibliographicCitationEhrhardt, J.C., Hexagonal fast Fourier transform with rectangular output (1993) IEEE Trans. Signal Process., 41 (3), pp. 1469-1472
dcterms.bibliographicCitationLaine, A.F., Hexagonal wavelet processing of digital mammography (1993) Med. Imaging, 1898, pp. 559-573
dcterms.bibliographicCitationKnaup, M., CT image reconstruction using hexagonal grids (2007) IEEE Nuclear Science Symposium Conference Record, 2007, NSS '07, 4, pp. 3074-3076
dcterms.bibliographicCitationSaranathan, M., Anthem: Anatomically tailored hexagonal MRI (2007) Magn. Reson. Imaging, 25 (7), pp. 1039-1047
dcterms.bibliographicCitationQuan, E., Lalush, D., Three-dimensional imaging properties of rotation- free square and hexagonal micro-CT systems (2010) IEEE Trans. Med. Imaging, 29 (3), pp. 916-923
dcterms.bibliographicCitationLa Riviere, P.J., Vargas, P., Novel sampling strategies for x-ray fluorescence computed tomography (2008) Proc. SPIE, 7078, pp. 70780Q
dcterms.bibliographicCitationHeintzmann, R., Sheppard, C.J.R., The sampling limit in fluorescence microscopy (2007) Micron, 38 (2), pp. 145-149
dcterms.bibliographicCitationDixit, N., Sivaswamy, J., A novel approach to generate up-sampled tomographic images using combination of rotated hexagonal lattices (2010) National Conf. on Communications, pp. 1-5. , IEEE, Chennai, India
dcterms.bibliographicCitationBosch, J., Improved spatiotemporal voxel space interpolation for 3D echocardiography with irregular sampling and multibeat fusion (2005) IEEE Ultrasonics Symp., 2, pp. 1232-1235. , IEEE, Rotterdam, The Netherlands
dcterms.bibliographicCitationWang, Y., Stephens, D., O'Donnell, M., Optimizing the beam pattern of a forward-viewing ring-annular ultrasound array for intravascular imaging (2002) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 49 (12), pp. 1652-1664
dcterms.bibliographicCitationChen, J., A monolithic three-dimensional ultrasonic transducer array for medical imaging (2007) J. Microelectromech. Syst., 16 (5), pp. 1015-1024
dcterms.bibliographicCitationOrtiz, S.H.C., Chiu, T., Fox, M.D., Ultrasound image enhancement: A review (2012) Biomed. Signal Process. Control, 7 (5), pp. 419-428
dcterms.bibliographicCitationLee, J.-S., Digital image enhancement and noise filtering by use of local statistics (1980) IEEE Trans. Pattern Anal. Mach. Intell., PAMI-2 (2), pp. 165-168
dcterms.bibliographicCitationFrost, V.S., A model for radar images and its application to adaptive digital filtering of multiplicative noise (1982) IEEE Trans. Pattern Anal. Mach. Intell., PAMI-4 (2), pp. 157-166
dcterms.bibliographicCitationBamber, J.C., Daft, C., Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images (1986) Ultrasonics, 24 (1), pp. 41-44
dcterms.bibliographicCitationDutt, V., Greenleaf, J.F., Adaptive speckle reduction filter for log-compressed b-scan images (1996) IEEE Trans. Med. Imaging, 15 (6), pp. 802-813
dcterms.bibliographicCitationYongjian, Y., Acton, S.T., Speckle reducing anisotropic diffusion (2002) IEEE Trans. Image Process., 11 (11), pp. 1260-1270
dcterms.bibliographicCitationAbd-Elmoniem, K.Z., Youssef, A.B.M., Kadah, Y.M., Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion (2002) IEEE Trans. Biomed. Eng., 49 (9), pp. 997-1014
dcterms.bibliographicCitationKrissian, K., Oriented speckle reducing anisotropic diffusion (2007) IEEE Trans. Image Process., 16 (5), pp. 1412-1424
dcterms.bibliographicCitationZong, X., Laine, A.F., Geiser, E.A., Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing (1998) IEEE Trans. Med. Imaging, 17 (4), pp. 532-540
dcterms.bibliographicCitationGupta, S., Chauhan, R., Sexana, S., Wavelet-based statistical approach for speckle reduction in medical ultrasound images (2004) Med. Biol. Eng. Comput., 42 (2), pp. 189-192
dcterms.bibliographicCitationOrtiz, S.H.C., Super-resolution of ultrasound images by displacement, averaging, and interlacing (2009) Proc. SPIE, 7265, p. 726519
dcterms.bibliographicCitationOrtiz, S.H.C., MacIone, J.J., Fox, M.D., Enhancement of ultrasound images by displacement, averaging, and interlacing (2010) J. Electron. Imaging, 19 (1), p. 011014
dcterms.bibliographicCitationOrtiz, S.H.C., Chiu, T., Fox, M.D., Hexagonal adaptive filtering on compound ultrasound images (2011) Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 4856-4859. , IEEE Engineering in Medicine and Biology Society, Boston, MA
dcterms.bibliographicCitationMersereau, R.M., Speake, T.C., The processing of periodically sampled multidimensional signals (1983) IEEE Trans. Acoust. Speech Signal Process., 31 (1), pp. 188-194
dcterms.bibliographicCitationHe, X., Jia, W., Hexagonal structure for intelligent vision (2005) First Int. Conf. on Information and Communication Technologies, pp. 52-64. , IEEE, Karachi, Pakistan
dcterms.bibliographicCitationWoodward, F., Muir, M., Hexagonal sampling (1984) Stanford Exploration Project, SEP-38, p. 12
dcterms.bibliographicCitationPetersen, D.P., Middleton, D., Sampling and reconstruction of wave-number-limited functions in n-dimensional Euclidean spaces (1962) Inf. Control, 5 (4), pp. 279-323
dcterms.bibliographicCitationStaunton, R., Hexagonal sampling in image processing (1999) Adv. Imaging Electron Phys., 107, pp. 231-307
dcterms.bibliographicCitationJensen, J.A., Field: A program for simulating ultrasound systems (1996) Med. Biol. Eng. Comput., 34 (SUPPL. 1), pp. 351-352
dcterms.bibliographicCitationJensen, J.A., Svendsen, N.B., Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers (1992) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39 (2), pp. 262-267
dcterms.bibliographicCitationFitz, A.P., Green, R.J., Fingerprint classification using a hexagonal fast Fourier transform (1996) Pattern Recognit., 29 (10), pp. 1587-1597
dcterms.bibliographicCitationPerona, P., Malik, J., Scale-space and edge detection using anisotropic diffusion (1990) IEEE Trans. Pattern Anal. Mach. Intell., 12 (7), pp. 629-639
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1117/1.JEI.23.4.043022
dc.subject.keywordsHexagonal sampling
dc.subject.keywordsSpeckle filtering
dc.subject.keywordsUltrasound
dc.subject.keywordsUltrasonics
dc.subject.keywordsAnisotropic diffusion filters
dc.subject.keywordsInterlaced samplings
dc.subject.keywordsNatural representation
dc.subject.keywordsRectangular lattices
dc.subject.keywordsSampling strategies
dc.subject.keywordsSpeckle filtering
dc.subject.keywordsUltrasound image enhancements
dc.subject.keywordsUltrasound images
dc.subject.keywordsPixels
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid57210822856
dc.identifier.orcid7401718655


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.