Mostrar el registro sencillo del ítem

dc.creatorFajardo Cuadro, Juan Gabriel
dc.creatorSarria B.
dc.creatorAlvarez Guerra M.
dc.date.accessioned2020-03-26T16:32:51Z
dc.date.available2020-03-26T16:32:51Z
dc.date.issued2014
dc.identifier.citationASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 6B
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9054
dc.description.abstractThis work has as object of study the energy of a river ship air conditioning system performance, using fiberglass, polyurethane or rockwool as insulation. Thermoeconomics Indicators based on second law of thermodynamics which take into account the quality of the energy and the cost of the exergy were used for research. It was observed that: (i) by increasing the thickness of the insulation the irreversibilities decreased, (ii) increases in the destroyed exergy increased generation of cooling load costs and (iii) costs per unit of exergy of heat load and area for the generation of cooling load and for investment in exergetic insulation, were minors for polyurethane. Copyright © 2014 by ASME.eng
dc.description.sponsorshipASME
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Society of Mechanical Engineers (ASME)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84926368744&doi=10.1115%2fIMECE201438334&partnerID=40&md5=d127cb711235ec2d63b2f4974e4dae45
dc.sourceScopus2-s2.0-84926368744
dc.titleThermoeconomic indicators ofair conditioning in a river ship to change the configuration of their thermal insulation
dcterms.bibliographicCitationBejan, A., Tsatsaronis, G., Moran, M., (1996) Thermal Desing and Optimazation, , New York: John Wiley & Sons
dcterms.bibliographicCitationKotas, T.J., (1995) The Exergy Method of Thermal Plant Analysis, , London: Krieger Publishing Company
dcterms.bibliographicCitationSakulpipatsin, P., Itard, L., An exergy applications for an analysis of buildings and HVAC systems (2010) Energy and Buildings, 42 (1), pp. 90-99
dcterms.bibliographicCitationCarpinlioglu, M., Yildirim, M., Kanoglu, M., Experimental study on an open cycle desiccant cooling system (2004) Applied Thermal Engineering, 24 (5-6), pp. 919-932
dcterms.bibliographicCitationYao, Y., Chen, J., Global optimization of a central airconditioning system using decomposition-coordination method (2010) Energy and Buildings, 42 (5), pp. 570-583
dcterms.bibliographicCitationCalise, F., Thermoeconomic analysis and optimization of high efficiency solar heating and cooling systems for different italian school buildings and climates (2010) Energy and Buildings, 42 (7), pp. 992-1003
dcterms.bibliographicCitationPapanikolaou, A., Holistic ship design optimization (2010) Computer-Aided Design, 42 (11), pp. 1028-1044
dcterms.bibliographicCitationSun, H., Faltinsen, O.M., Hydrodynamic forces on a semi-displacement ship at high speed (2012) Applied Ocean Research, 34 (1), pp. 68-77
dcterms.bibliographicCitationTzabiras, G., Kontogianni, K., (2010) An Integrated Method for Predicting the Hydrodynamic Resistance of Low-CB Ships, 42 (11), pp. 985-1000
dcterms.bibliographicCitationChen, X., Malenica, S., (2010) Hydrodynamic Pressure Distribution on Ship Hull at Very High Encounter Frequencies, 22 (5), pp. 532-537
dcterms.bibliographicCitationChirica, I., Musa, S.D., Chiric, R., Bezne, E.F., Torsional behaviour of the ship hull composite model (2011) Computational Materials Science, 50 (3), pp. 1381-1386
dcterms.bibliographicCitationYu, Y.H., Kim, B.G., Le, D.G., Cryogenic reliability of composite insulation panels for liquefied natural gas (LNG) ships (2012) Composite Structures, 94 (2), pp. 462-468
dcterms.bibliographicCitationLee, S.J., Kim, J.S., (2011) Effects of Flow Velocity on Electrochemical Behavior of Seachest 5083-H116 AL Allloy for Ship, , Korea: ELSEVIER
dcterms.bibliographicCitationHart. Fulton, P.G.H., Cox, G., (2008) Ship Configurations and Insulation Design / Application
dcterms.bibliographicCitation(1992) Thermal Insulation Report, , SNAME, New York: SNAME
dcterms.bibliographicCitation(2005) Standard Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of A Hot Box Apparatus, , ASTM, USA: ASTM
dcterms.bibliographicCitation(2007) Marine Gen Set Engine Performance C4.4 DITA 76 ekW/60 Hz/1800 RPM, , CATERPILLAR, USA: CATERPILLAR
dcterms.bibliographicCitationArcieri, V., (2007) Patrulleras Fluviales Colombianas Navegarían en Los Ríos Tigris y Éufrates (en Irak), , El Tiempo
dcterms.bibliographicCitation(2010) Serpentine Curves, , TRANE, USA
dcterms.bibliographicCitationSakulpipatsin, P., (2008) Exergy Efficient Building Desing, , Delft: Technische Universiteit Delft
dcterms.bibliographicCitationAbusoglu, A., Kanoglu, M., Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1-Formulations (2008) Applied Thermal Engineering, 29 (2-3), pp. 234-241
dcterms.bibliographicCitationTsatsaronis, G., Park, M., (2002) On Avoidable and Unavoidable Exergy Destructions and Investment Cost in Thermal Systems, 43
dcterms.bibliographicCitationWu, X., Zmeureanu, R., (2004) Exergy Analysis of Hvac Systems for A House in Montreal, , Vancouver: ESIM 2004
dcterms.bibliographicCitationDincer, I., Rosen, M., (2007) Exergy: Energy. Environment. and Sustainable Development, , Oxford: Elsevier
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.eventASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1115/IMECE201438334
dc.subject.keywordsAir conditioning
dc.subject.keywordsCosts
dc.subject.keywordsExergy
dc.subject.keywordsInsulation
dc.subject.keywordsInvestments
dc.subject.keywordsPolyurethanes
dc.subject.keywordsShips
dc.subject.keywordsThermodynamics
dc.subject.keywordsCooling load
dc.subject.keywordsDestroyed exergy
dc.subject.keywordsExergetic
dc.subject.keywordsPer unit
dc.subject.keywordsSecond Law of Thermodynamics
dc.subject.keywordsShip air-conditioning
dc.subject.keywordsThermo-economic
dc.subject.keywordsThermo-economics
dc.subject.keywordsThermal insulation
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate14 November 2014 through 20 November 2014
dc.type.spaConferencia
dc.identifier.orcid56581610900
dc.identifier.orcid56581727500
dc.identifier.orcid56798119000


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.