Show simple item record

PBC approach applied on a DC-DC step-down converter for providing service to CPLs

dc.contributor.editorGarcia-Tirado J.
dc.contributor.editorMunoz-Durango D.
dc.contributor.editorAlvarez H.
dc.contributor.editorBotero-Castro H.
dc.creatorMontoya O.D.
dc.creatorGil-Gonzalez W.
dc.creatorSerra F.M.
dc.creatorMagaldi G.
dc.date.accessioned2020-03-26T16:32:49Z
dc.date.available2020-03-26T16:32:49Z
dc.date.issued2019
dc.identifier.citation4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings
dc.identifier.isbn9781538669624
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9039
dc.description.abstractThis paper addresses the problem of output voltage regulation for step-down converters (buck converters) for constant power load (CPL) applications. The model of the CPL corresponds to a hyperbolic constraint that introduces nonlinearities on the dynamical model. To regulate the voltage profile in this nonlinear load a passivity-based control (PBC) approach is proposed. The main advantage of the proposed control approach corresponds to the parametric independence of the controller, even if the CPL and the asymptotic stability in the sense of Lyapunov are unknown. Numerical results validate the proposed control approach in comparison to conventional PID controller. © 2019 IEEE.eng
dc.description.sponsorshipUniversidad Tecnológica de Pereira, UTP: C2018P020 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Universidad Nacional de San Luis, UNSL: PROICO 142318, PICT-2017-0794 National Council for Scientific Research, NCSR Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET
dc.description.sponsorshipColombian Conference on Automatic Control (CCAC);IEEE;IEEE Colombia;IEEE Colombian Chapter (CSS)
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077954097&doi=10.1109%2fCCAC.2019.8920944&partnerID=40&md5=0a22a7d107d63f171128788ef368922a
dc.sourceScopus2-s2.0-85077954097
dc.titlePBC approach applied on a DC-DC step-down converter for providing service to CPLs
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationKumar, D., Zare, F., Ghosh, A., Dc microgrid technology: System architectures, ac grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects (2017) IEEE Access, 5 (230), p. 12. , 12 256
dcterms.bibliographicCitationSolsona, J., Gomez Jorge, S., Busada, C., Nonlinear control of a buck converter feeding a constant power load (2014) IEEE Latin America Transactions, 12 (5), pp. 899-903. , Aug
dcterms.bibliographicCitationAl-Nussairi, M., Bayindir, R., Padmanaban, S., Mihet-Popa, L., Siano, P., Constant power loads (cpl) with microgrids: Problem definition, stability analysis and compensation techniques (2017) Energies, 10 (1656), pp. 1-20. , Jun
dcterms.bibliographicCitationHassan, M.A., Li, E., Li, X., Li, T., Duan, C., Chi, S., Adaptive passivity-based control of DC-DC buck power converter with constant power load in DC microgrid systems (2018) IEEE Journal of Emerging and Selected Topics in Power Electronics, p. 1
dcterms.bibliographicCitationMicrocontroller based bidirectional buckboost converter for photo-voltaic power plant (2018) J. Electr. Syst. Inf. Technol., 5 (3), pp. 745-758. , V. V. and V. S. R. R
dcterms.bibliographicCitationDi Piazza, M.C., Pucci, M., Ragusa, A., Vitale, G., Analytical versus neural real-Time simulation of a photovoltaic generator based on a DC-DC converter (2010) IEEE Trans. Ind. Appl., 46 (6), pp. 2501-2510. , Nov
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Ortega-Velázquez, I., Espinosa-Pérez, G.R., Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 89-94. , April
dcterms.bibliographicCitationHerrera, L., Zhang, W., Wang, J., Stability analysis and controller design of DC microgrids with constant power loads (2017) IEEE Trans. Smart Grid, 8 (2), pp. 881-888. , March
dcterms.bibliographicCitationSimpson-Porco, J.W., Drfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, 62 (8), pp. 811-815. , Aug
dcterms.bibliographicCitationSingh, S., Gautam, A.R., Fulwani, D., Constant power loads and their effects in DC distributed power systems: A review (2017) Renewable Sustainable Energy Rev., 72, pp. 407-421
dcterms.bibliographicCitationCavanini, L., Cimini, G., Ippoliti, G., Bemporad, A., Model predictive control for pre-compensated voltage mode controlled DCdc converters (2017) IET Control Theory Applications, 11 (15), pp. 2514-2520
dcterms.bibliographicCitationGil-Gonzlez, W.J., Montoya, O.D., Garces, A., Serra, F.M., Magaldi, G., Output voltage regulation for DCdc buck converters: A passivitybased pi design (2019) 2019 IEEE 10th Latin American Symposium on Circuits Systems (LASCAS), pp. 189-192. , Feb
dcterms.bibliographicCitationLinares-Flores, J., Barahona-Avalos, J.L., Sira-Ramirez, H., Contreras-Ordaz, M.A., Robust passivity-based control of a buckboost-converter/dc-motor system: An active disturbance rejection approach (2012) IEEE Trans. Ind. Appl., 48 (6), pp. 2362-2371. , Nov
dcterms.bibliographicCitationLing, R., Maksimovic, D., Leyva, R., Second-order sliding-mode controlled synchronous buck DCdc converter (2016) IEEE Trans. Power Electron., 31 (3), pp. 2539-2549. , March
dcterms.bibliographicCitationMa, L., Zhang, Y., Yang, X., Ding, S., Dong, L., Quasi-continuous second-order sliding mode control of buck converter (2018) IEEE Access, 6 (859), p. 17. , 17 867
dcterms.bibliographicCitationAlvarez-Ramirez, J., Cervantes, I., Espinosa-Perez, G., Maya, P., Morales, A., A stable design of pi control for DC-DC converters with an rhs zero (2001) IEEE Trans. Circuits Syst. i, 48 (1), pp. 103-106. , Jan
dcterms.bibliographicCitationTsai, C., Chen, B., Li, H., Switching frequency stabilization techniques for adaptive on-Time controlled buck converter with adaptive voltage positioning mechanism (2016) IEEE Trans. Power Electron., 31 (1), pp. 443-451. , Jan
dcterms.bibliographicCitationGuo, L., Hung, J.Y., Nelms, R.M., Evaluation of dsp-based pid and fuzzy controllers for DCdc converters (2009) IEEE Trans. Ind. Electron., 56 (6), pp. 2237-2248. , June
dcterms.bibliographicCitationAttia, A.-F., Sehiemy, R.A.E., Hasanien, H.M., Optimal power flow solution in power systems using a novel sine-cosine algorithm (2018) Int. J. Electr. Power Energy Syst., 99, pp. 331-343
dcterms.bibliographicCitationYang, B., Yu, T., Zhang, X., Huang, L., Shu, H., Jiang, L., Interactive teachinglearning optimiser for parameter tuning of vsc-hvdc systems with offshore wind farm integration (2018) IET Generation, Transmission Distribution, 12 (3), pp. 678-687
dcterms.bibliographicCitationHuynh, T.-H., A modified shuffled frog leaping algorithm for optimal tuning of multivariable pid controllers (2008) 2008 IEEE International Conference on Industrial Technology, pp. 1-6. , April
dcterms.bibliographicCitationSerra, F., Magaldi, G., Martin Fernandez, L., Guillermo, L., De Angelo, C., Ida-pbc controller of a DC-DC boost converter for continuous and discontinuous conduction mode (2018) IEEE Latin America Transactions, 16 (1), pp. 52-58. , Jan
dcterms.bibliographicCitationMagaldi, G.L., Serra, F.M., Martin Fernandez, L.L., Larregay, G.O., De Angelo, Y.C., Control of an isolated DC microgrid supplying constant power load (2018) 2018 IEEE Biennial Congress of Argentina (ARGENCON), pp. 1-7. , June
dcterms.bibliographicCitationOrtega, R., Van Der Schaft, A., Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119
dcterms.bibliographicCitationCisneros, R., Mancilla-David, F., Ortega, R., Passivity-based control of a grid-connected small-scale windmill with limited control authority (2013) IEEE Journal of Emerging and Selected Topics in Power Electronics, 1 (4), pp. 247-259. , Dec
dcterms.bibliographicCitationKhalil, H., (2013) Nonlinear Systems, Ser. Always Learning., , Pearson Education, Limited
dcterms.bibliographicCitationMahto, T., Mukherjee, V., Evolutionary optimization technique for comparative analysis of different classical controllers for an isolated winddiesel hybrid power system (2016) Swarm Evol. Comput., 26, pp. 120-136
dcterms.bibliographicCitationGuha, D., Roy, P.L., Banerjee, S., Optimal tuning of 3 degree-offreedom proportional-integral-derivative controller for hybrid distributed power system using dragonfly algorithm (2018) Comput. Electr. Eng., 72, pp. 137-153
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event4th IEEE Colombian Conference on Automatic Control, CCAC 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/CCAC.2019.8920944
dc.subject.keywordsAsymptotic stability
dc.subject.keywordsConstant power loads
dc.subject.keywordsHamiltonian models
dc.subject.keywordsOutput voltage regulation
dc.subject.keywordsPassivity-based control
dc.subject.keywordsAsymptotic stability
dc.subject.keywordsAutomation
dc.subject.keywordsControllers
dc.subject.keywordsProcess control
dc.subject.keywordsProductivity
dc.subject.keywordsThree term control systems
dc.subject.keywordsVoltage regulators
dc.subject.keywordsConstant power load
dc.subject.keywordsConstant power loads (CPL)
dc.subject.keywordsConventional pid
dc.subject.keywordsHamiltonian models
dc.subject.keywordsNumerical results
dc.subject.keywordsOutput voltage regulation
dc.subject.keywordsPassivity based control
dc.subject.keywordsStep-down converter
dc.subject.keywordsDC-DC converters
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was supported in part by the Administrative Department of Science, Technology, and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015, by the Universidad Tecnológica de Bolívar under Project C2018P020, by the National Council of Scientific and Technical Research (CONICET) and by Universidad Nacional de San Luis (UNSL) under Project PROICO 142318 and PICT-2017-0794.
dc.relation.conferencedate15 October 2019 through 18 October 2019
dc.type.spaConferencia
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid37104976300
dc.identifier.orcid57190661793


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/