Show simple item record

A density functional theory study of the reconstruction of gold (111) surfaces

dc.creatorTorres E.
dc.creatorDilabio G.A.
dc.date.accessioned2020-03-26T16:32:49Z
dc.date.available2020-03-26T16:32:49Z
dc.date.issued2014
dc.identifier.citationJournal of Physical Chemistry C; Vol. 118, Núm. 29; pp. 15624-15629
dc.identifier.issn19327447
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9035
dc.description.abstractWe studied (p × √3) gold (111) surface reconstructions within the DFT/PW91 approximation. Our findings clearly show that the reconstruction is energetically favorable in unreconstructed surfaces equal to or larger than the unit cell of the final reconstructed surface. Reconstructions in surfaces smaller than ∼2.95 nm in the [11̄0] direction are not more stable than the unreconstructed surface, and this may explain why (p × √3) type reconstructions have not been observed in subnanometer gold particles. We found that reconstructions with (22 × √3) and (23 × √3) unit cells, usually reported in experiments, are isoenergetic. © 2014 American Chemical Society.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84905045699&doi=10.1021%2fjp411368v&partnerID=40&md5=ab4e8550e8c9dafe0869f4d081bf1d81
dc.titleA density functional theory study of the reconstruction of gold (111) surfaces
dcterms.bibliographicCitationHammer, B., Norskøv, J.K., Why Gold Is the Noblest of All the Metals (1995) Nature, 376, pp. 238-240
dcterms.bibliographicCitationLove, J., Estroff, L., Kriebel, J., Nuzzo, R., Whitesides, G., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology (2005) Chem. Rev., 105, pp. 1103-1170
dcterms.bibliographicCitationHeyraud, J., Métois, J., Anomalous 422 Diffraction Spots from {111} Flat Gold Crystallites: (111) Surface Reconstruct Ion and Moiré Fringes between the Surface and the Bulk (1980) Surf. Sci., 100, pp. 519-528
dcterms.bibliographicCitationEmch, R., Nogami, J., Dovek, M.M., Lang, C.A., Quate, C.F., Characterization of Gold Surfaces for Use As Substrates in Scanning Tunneling Microscopy Studies (1989) J. Appl. Phys., 65, pp. 79-84
dcterms.bibliographicCitationSchreiber, F., Structure and Growth of Self-Assembling Monolayers (2000) Prog. Surf. Sci., 65, pp. 151-257
dcterms.bibliographicCitationFinch, G.I., Quarrell, A.G., Wilman, H., Electron Diffraction and Surface Structure (1935) Trans. Faraday Soc., 31, pp. 1051-1080
dcterms.bibliographicCitationYagi, K., Takayanagi, K., Kobayashi, K., Osakabe, N., Tanishiro, Y., Honjo, G., Surface Study by an {UHV} Electron Microscope (1979) Surf. Sci., 86, pp. 174-181
dcterms.bibliographicCitationHarten, U., Lahee, A.M., Toennies, J.P., Wöll, C., Observation of a Soliton Reconstruction of Au(111) by High-Resolution Helium-Atom Diffraction (1985) Phys. Rev. Lett., 54, pp. 2619-2622
dcterms.bibliographicCitationWöll, C., Chiang, S., Wilson, R.J., Lippel, P.H., Determination of Atom Positions at Stacking-Fault Dislocations on Au(111) by Scanning Tunneling Microscopy (1989) Phys. Rev. B, 39, pp. 7988-7991
dcterms.bibliographicCitationBarth, J.V., Brune, H., Ertl, G., Behm, R.J., Scanning Tunneling Microscopy Observations on the Reconstructed Au(111) Surface: Atomic Structure, Long-Range Superstructure, Rotational Domains, and Surface Defects (1990) Phys. Rev. B, 42, pp. 9307-9318
dcterms.bibliographicCitationTao, N.J., Lindsay, S.M., Observations of the 22 × √3 Reconstruction of Au(111) under Aqueous Solutions Using Scanning Tunneling Microscopy (1991) J. Appl. Phys., 70, pp. 5141-5143
dcterms.bibliographicCitationSandy, A.R., Mochrie, S.G.J., Zehner, D.M., Huang, K.G., Gibbs, D., Structure and Phases of the Au(111) Surface: X-ray-Scattering Measurements (1991) Phys. Rev. B, 43, pp. 4667-4687
dcterms.bibliographicCitationMcIntosh, E.M., Kole, P.R., El-Batanouny, M., Chisnall, D.M., Ellis, J., Allison, W., Measurement of the Phason Dispersion of Misfit Dislocations on the Au(111) Surface (2013) Phys. Rev. Lett., 110, p. 086103
dcterms.bibliographicCitationErcolessi, F., Bartolini, A., Garofalo, M., Parrinello, M., Tosatti, E., Au Surface Reconstructions in the Glue Model (1987) Surf. Sci., 189-190, pp. 636-640
dcterms.bibliographicCitationRavelo, R., El-Batanouny, M., Molecular-Dynamics Study of the Reconstructed Au(111) Surface: Low Temperature (1989) Phys. Rev. B, 40, pp. 9574-9589
dcterms.bibliographicCitationHohenberg, P., Kohn, W., Inhomogeneous Electron Gas (1964) Phys. Rev., 136, pp. 864-B871
dcterms.bibliographicCitationKohn, W., Sham, L.J., Self-Consistent Equations Including Exchange and Correlation Effects (1965) Phys. Rev., 140, pp. 1133-A1138
dcterms.bibliographicCitationWang, Y., Hush, N.S., Reimers, J.R., Simulation of the Au(111)-(22 × √3) Surface Reconstruction (2007) Phys. Rev. B, 75, p. 233416
dcterms.bibliographicCitationHanke, F., Björk, J., Structure and Local Reactivity of the Au(111) Surface Reconstruction (2013) Phys. Rev. B, 87, p. 235422
dcterms.bibliographicCitationKresse, G., Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set (1996) Phys. Rev. B, 54, pp. 11169-11186
dcterms.bibliographicCitationPerdew, J.P., Wang, Y., Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy (1992) Phys. Rev. B, 45, pp. 13244-13249
dcterms.bibliographicCitationBlöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B, 50, pp. 17953-17979
dcterms.bibliographicCitationKresse, G., Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method (1999) Phys. Rev. B, 59, pp. 1758-1775
dcterms.bibliographicCitationMonkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B, 13, pp. 5188-5192
dcterms.bibliographicCitationBoettger, J.C., Nonconvergence of Surface Energies Obtained from Thin-Film Calculations (1994) Phys. Rev. B, 49, pp. 16798-16800
dcterms.bibliographicCitationBoettger, J.C., Persistent Quantum-Size Effect in Aluminum Films up to Twelve Atoms Thick (1996) Phys. Rev. B, 53, pp. 13133-13137
dcterms.bibliographicCitationFiorentini, V., Methfessel, M., Extracting Convergent Surface Formation Energies from Slab Calculations (1998) J. Phys.: Condens. Matter, 10, p. 895
dcterms.bibliographicCitationBoettger, J.C., Smith, J.R., Birkenheuer, U., Rösch, N., Trickey, S.B., Sabin, J.R., Apell, S.P., Extracting Convergent Surface Formation Energies from Slab Calculations (1998) J. Phys.: Condens. Matter, 10, p. 893
dcterms.bibliographicCitationFrankcombe, T.J., Løvvik, O.M., The Crystal Structure and Surface Energy of NaAlH4: A Comparison of DFT Methodologies (2006) J. Phys. Chem. B, 110, pp. 622-630
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1021/jp411368v
dc.subject.keywordsGold
dc.subject.keywordsDensity functional theory studies
dc.subject.keywordsGold particles
dc.subject.keywordsReconstructed surfaces
dc.subject.keywordsSub nanometers
dc.subject.keywordsType reconstruction
dc.subject.keywordsUnit cells
dc.subject.keywordsRepair
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid35094573000
dc.identifier.orcid7003322749


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/