Mostrar el registro sencillo del ítem

dc.creatorMedina Marrero R.
dc.creatorMarrero-Ponce Y.
dc.creatorBarigye S.J.
dc.creatorEcheverría Díaz Y.
dc.creatorAcevedo Barrios, Rosa
dc.creatorCasañola-Martín G.M.
dc.creatorGarcía Bernal M.
dc.creatorTorrens, F.
dc.creatorPérez-Giménez F.
dc.date.accessioned2020-03-26T16:32:48Z
dc.date.available2020-03-26T16:32:48Z
dc.date.issued2015
dc.identifier.citationSAR and QSAR in Environmental Research; Vol. 26, Núm. 11; pp. 943-958
dc.identifier.issn1062936X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9032
dc.description.abstractThe QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections. © 2015 Taylor & Francis.eng
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherTaylor and Francis Ltd.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84947865592&doi=10.1080%2f1062936X.2015.1104517&partnerID=40&md5=9de40bde3e81a41d4828d1586f4b0c9f
dc.titleQuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents
dcterms.bibliographicCitationBlumberg, H.M., Jarvis, W.R., Soucie, J.M., Edwards, J.E., Patterson, J.E., Pfaller, M.A., Rangel-Frausto, M.S., Wenzel, R.P., Risk factors for candidal bloodstream infections in surgical intensive care unit patients: The NEMIS prospective multicenter study. The National Epidemiology of Mycosis Survey (2001) Clin. Infect. Dis, 33, pp. 177-186
dcterms.bibliographicCitationM.-P.Y. acknowledges Valencia University, Spain, for partial financial support as well as the programme ‘Estades Temporals per an Investigadors Convidats’ for a fellowship to work at Valencia University (2015). S.J.B. acknowledges financial support from CNPq.
dcterms.bibliographicCitationMaschmeyer, G., The changing epidemiology of invasive fungal infections: New threats (2006) Int. J. Antimicrob. Agents, 27, pp. 3-6
dcterms.bibliographicCitationNucci, M., Marr, K.A., Emerging fungal diseases (2005) Clin. Infect. Dis, 41, pp. 521-526
dcterms.bibliographicCitationRees, J.R., Pinner, R.W., Hajjeh, R.A., Brandt, M.E., Reingold, A.L., The epidemiological features of invasive mycotic infections in the San Francisco Bay area, 1992–1993: Results of population-based laboratory active surveillance (1998) Clin. Infect. Dis, 27, pp. 1138-1147
dcterms.bibliographicCitationWalsh, T.J., Groll, A., Hiemenz, J., Fleming, R., Roilides, E., Anaissie, E., Infections due to emerging and uncommon medically important fungal pathogens (2004) Clin. Microbiol. Infect, 10, pp. 48-66
dcterms.bibliographicCitationDickman, D.A., Ding, H., Li, Q., Nilius, A.M., Balli, D.J., Ballaron, S.J., Trevillyan, J.M., Bennani, Y.L., Antifungal rapamycin analogues with reduced immunosuppressive activity (2000) Bioorg. Med. Chem. Lett, 10, pp. 1405-1408
dcterms.bibliographicCitationGozalbes, R., Galvez, J., Moreno, A., Garcia-Domenech, R., Discovery of new antimalarial compounds by use of molecular connectivity techniques (1999) J. Pharm. Pharmacol, 51, pp. 111-117
dcterms.bibliographicCitationMarrero-Ponce, Y., Montero-Torres, A., Zaldivar, C.R., Veitia, M.I., Perez, M.M., Sanchez, R.N., Non-stochastic and stochastic linear indices of the 'molecular pseudograph's atom adjacency matrix': Application to 'in silico' studies for the rational discovery of new antimalarial compounds (2005) Bioorg. Med. Chem, 13, pp. 1293-1304
dcterms.bibliographicCitationMarrero-Ponce, Y., Iyarreta-Veitia, M., Montero-Torres, A., Romero-Zaldivar, C., Brandt, C.A., Avila, P.E., Kirchgatter, K., Machado, Y., Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps (2005) J. Chem. Inf. Model, 45, pp. 1082-1100
dcterms.bibliographicCitationMcKie, J.H., Douglas, K.T., Chan, C., Roser, S.A., Yates, R., Read, M., Hyde, J.E., Sirawaraporn, W., Rational drug design approach for overcoming drug resistance: Application to pyrimethamine resistance in malaria (1998) J. Med. Chem, 41, pp. 1367-1370
dcterms.bibliographicCitationEstrada, E., Pena, A., Garcia-Domenech, R., Designing sedative/hypnotic compounds from a novel substructural graph-theoretical approach (1998) J. Comput. Aided Mol. Des, 12, pp. 583-595
dcterms.bibliographicCitationEstrada, E., Uriarte, E., Montero, A., Teijeira, M., Santana, L., De Clercq, E., A novel approach for the virtual screening and rational design of anticancer compounds (2000) J. Med. Chem, 43, pp. 1975-1985
dcterms.bibliographicCitationGonzalez-Diaz, H., Tenorio, E., Castanedo, N., Santana, L., Uriarte, E., 3D QSAR Markov model for drug-induced eosinophilia – –theoretical prediction and preliminary experimental assay of the antimicrobial drug G1 (2005) Bioorg. Med. Chem, 13, pp. 1523-1530
dcterms.bibliographicCitationLyne, P.D., Structure-based virtual screening: An overview (2002) Drug. Discov. Today, 7, pp. 1047-1055
dcterms.bibliographicCitationTodeschini, R., Consonni, V., (2009) Molecular Descriptors for Chemoinformatics, , Wiley-VCH, Weinheim:
dcterms.bibliographicCitationSeifert, M.H.J., Wolf, K., Vitt, D., Virtual high-throughput in silico screening (2003) Biosilico, pp. 143-149
dcterms.bibliographicCitationBarigye, S.J., Marrero-Ponce, Y., Pérez-Giménez, F., Bonchev, D., Trends in information theory-based chemical structure codification (2014) Mol. Divers, 19, pp. 305-319
dcterms.bibliographicCitationBarigye, S.J., Freitas, M.P., 2D-Discrete Fourier transform: Generalization of the MIA-QSAR strategy in molecular modeling (2015) Chemom. Intell. Lab. Syst, 143, pp. 79-84
dcterms.bibliographicCitationBarigye, S., Marrero-Ponce, Y., López, Y.M., Santiago, O.M., Torrens, F., Domenech, R.G., Galvez, J., Event-based criteria in GT-STAF information indices: Theory, exploratory diversity analysis and QSPR applications (2013) SAR QSAR Environ Res, 24, pp. 3-34
dcterms.bibliographicCitationBarigye, S.J., Freitas, M.P., Is molecular alignment an indispensable requirement in the MIA-QSAR method? (2015) J. Comput. Chem, 36, pp. 1748-1755
dcterms.bibliographicCitationGollapudy, R., Ajmani, S., Kulkarni, S.A., Modeling and interactions ofAspergillus fumigatuslanosterol 14-alpha demethylase 'A' with azole antifungals (2004) Bioorg. Med. Chem, 12, pp. 2937-2950
dcterms.bibliographicCitationGokhale, V.M., Kulkarni, V.M., Understanding the antifungal activity of terbinafine analogues using quantitative structure–activity relationship (QSAR) models (2000) Bioorg. Med. Chem, 8, pp. 2487-2499
dcterms.bibliographicCitationPurushottamachar, P., Kulkarni, V.M., 3D-QSAR of N-myristoyltransferase inhibiting antifungal agents by CoMFA and CoMSIA methods (2003) Bioorg. Med. Chem, 11, pp. 3487-3497
dcterms.bibliographicCitationPranav, Kumar, S.K., Kulkarni, V.M., Insights into the selective inhibition ofCandida albicanssecreted aspartyl protease: A docking analysis study (2002) Bioorg. Med. Chem, 10, pp. 1153-1170
dcterms.bibliographicCitationFratev, F., Benfenati, E., 3D-QSAR and molecular mechanics study for the differences in the azole activity against yeastlike and filamentous fungi and their relation to P450DM inhibition. 1. 3-Substituted-4(3H)-quinazolinones (2005) J. Chem. Inf. Model, 45, pp. 634-644
dcterms.bibliographicCitationGonzalez-Diaz, H., Prado-Prado, F.J., Santana, L., Uriarte, E., Unify QSAR approach to antimicrobials. Part 1: Predicting antifungal activity against different species (2006) Bioorg. Med. Chem, 14, pp. 5973-5980
dcterms.bibliographicCitationPastor, L., Garcia-Domenech, R., Galvez, J., Wolski, S., Garcia, M.D., New antifungals selected by molecular topology (1998) Bioorg. Med. Chem. Lett, 8, pp. 2577-2582
dcterms.bibliographicCitationGarcía-Domenech, R., Catalá-Gregori, A., Calabuig, C., Antón-Fos, G., del Castillo, L., Gálvez, J., Predicting antifungal activity: A computational screening using topological descriptors (2002) Internet Electron. J. Mol. Des, 7, pp. 339-350
dcterms.bibliographicCitationChen, S.-W., Li, Z.-R., Li, X.-Y., Prediction of antifungal activity by support vector machine approach (2005) J. Mol. Struct. (THEOCHEM), 731, pp. 73-81
dcterms.bibliographicCitationMarrero-Ponce, Y., Total and local quadratic indices of the molecular pseudograph′s atom adjacency matrix: Applications to the prediction of physical properties of organic compounds (2003) Molecules, 8, pp. 687-726
dcterms.bibliographicCitationMarrero-Ponce, Y., Linear indices of the ‘molecular pseudograph's atom adjacency matrix’: Definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors (2004) J. Chem. Inf. Comput. Sci, 44, pp. 2010-2026
dcterms.bibliographicCitationMarrero-Ponce, Y., Meneses-Marcel, A., Castillo-Garit, J.A., Machado-Tugores, Y., Escario, J.A., Barrio, A.G., Pereira, D.M., Alvarado, Y.J., Predicting antitrichomonal activity: A computational screening using atom-based bilinear indices and experimental proofs (2006) Bioorg. Med. Chem, 14, pp. 6502-6524
dcterms.bibliographicCitationGarcía-Jacas, C.R., Marrero-Ponce, Y., Acevedo-Martínez, L., Barigye, S.J., Valdés-Martiní, J.R., Contreras-Torres, E., QuBiLS-MIDAS: A parallel free-software for molecular descriptors computation based on multilinear algebraic maps (2014) J. Comp. Chem, 35, pp. 1395-1409
dcterms.bibliographicCitationGarcia-Jacas, C.R., Marrero-Ponce, Y., Barigye, S.J., Valdes-Martini, J.R., Rivera-Borroto, O.M., Olivero-Verbel, J., N-linear algebraic maps for chemical structure codification: A suitable generalization for atom-pair approaches? (2014) Curr. Drug Metab, 15, pp. 441-469
dcterms.bibliographicCitationGarcía-Jacas, C.R., Aguilera-Mendoza, L., González-Pérez, R., Marrero-Ponce, Y., Acevedo-Martínez, L., Barigye, S.J., Avdeenko, T., Multi-server approach for high-throughput molecular descriptors calculation based on multi-linear algebraic maps (2015) Mol. Info, 34, pp. 60-69
dcterms.bibliographicCitationCasanola-Martin, G.M., Khan, M.T., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, M.N., Torrens, F., New tyrosinase inhibitors selected by atomic linear indices-based classification models (2006) Bioorg. Med. Chem. Lett, 16, pp. 324-330
dcterms.bibliographicCitationMarrero-Ponce, Y., Castillo-Garit, J.A., Olazabal, E., Serrano, H.S., Morales, A., Castanedo, N., Ibarra-Velarde, F., Castro, E.A., TOMOCOMD-CARDD, a novel approach for computer-aided 'rational' drug design: I. Theoretical and experimental assessment of a promising method for computational screening and in silico design of new anthelmintic compounds (2004) J. Comput. Aided Mol. Des, 18, pp. 615-634
dcterms.bibliographicCitationMarrero-Ponce, Y., Castillo-Garit, J.A., Olazabal, E., Serrano, H.S., Morales, A., Castanedo, N., Ibarra-Velarde, F., Castro, E.A., Atom, atom-type and total molecular linear indices as a promising approach for bioorganic and medicinal chemistry: Theoretical and experimental assessment of a novel method for virtual screening and rational design of new lead anthelmintic (2005) Bioorg. Med. Chem, 13, pp. 1005-1020
dcterms.bibliographicCitationMarrero-Ponce, Y., Machado-Tugores, Y., Pereira, D.M., Escario, J.A., Barrio, A.G., Nogal-Ruiz, J.J., Ochoa, C., Meneses-Marcel, A., A computer-based approach to the rational discovery of new trichomonacidal drugs by atom-type linear indices (2005) Curr. Drug Discov. Technol, 2, pp. 245-265
dcterms.bibliographicCitationMarrero-Ponce, Y., Marrero, R.M., Torrens, F., Martinez, Y., Bernal, M.G., Zaldivar, V.R., Castro, E.A., Abalo, R.G., Non-stochastic and stochastic linear indices of the molecular pseudograph's atom-adjacency matrix: A novel approach for computational in silico screening and ‘rational’ selection of new lead antibacterial agents (2006) J. Mol. Model. (Online), 12, pp. 255-271
dcterms.bibliographicCitationMarrero-Ponce, Y., Medina-Marrero, R., Torrens, F., Martinez, Y., Romero-Zaldivar, V., Castro, E.A., Atom, atom-type, and total nonstochastic and stochastic quadratic fingerprints: A promising approach for modeling of antibacterial activity (2005) Bioorg. Med. Chem, 13, pp. 2881-2899
dcterms.bibliographicCitationVega, M.C., Montero-Torres, A., Marrero-Ponce, Y., Rolon, M., Gomez-Barrio, A., Escario, J.A., Aran, V.J., Torrens, F., New ligand-based approach for the discovery of antitrypanosomal compounds (2006) Bioorg. Med. Chem. Lett, 16, pp. 1898-1904
dcterms.bibliographicCitationAlho, M.A.M., Marrero-Ponce, Y., Barigye, S.J., Meneses-Marcel, A., Tugores, Y.M., Montero-Torres, A., Gómez-Barrio, A., Vega, M.C., Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones (2014) Bioorg. Med. Chem, 22, pp. 1568-1585
dcterms.bibliographicCitationCastillo-Garit, J.A., Marrero-Ponce, Y., Barigye, S.J., Medina-Marrero, R., Bernal, M.G., de la Vega, J.M., Torrens, F., García-Domenechd, R., In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach (2015) J. Braz. Chem. Soc, 26, pp. 1218-1226
dcterms.bibliographicCitationBedi, P.M., Mahajan, M.P., Kapoor, V.K., Amidine derived 1,3-diazabuta-1,3-dienes as potential antibacterial and antifungal agents (2004) Bioorg. Med. Chem. Lett, 14, pp. 3821-3824
dcterms.bibliographicCitationBrayman, T.G., Wilks, J.W., Sensitive assay for antifungal activity of glucan synthase inhibitors that uses germ tube formation inCandida albicansas an end point (2003) Antimicrob. Agents Chemother, 47, pp. 3305-3310
dcterms.bibliographicCitationBryskier, A., Novelties in the field of anti-infective compounds in 1999 (2000) Clin. Infect. Dis, 31, pp. 1423-1466
dcterms.bibliographicCitationBuchta, V., Pour, M., Kubanova, P., Silva, L., Votruba, I., Voprsalova, M., Schiller, R., Spulak, M., In vitro activities of 3-(halogenated phenyl)-5-acyloxymethyl- 2,5-dihydrofuran-2-ones against common and emerging yeasts and molds (2004) Antimicrob. Agents Chemother, 48, pp. 873-878
dcterms.bibliographicCitationBueno, J.M., Cuevas, J.C., Fiandor, J.M., Garcia-Ochoa, S., Gomez de las Heras, F., Antifungal sordarins. Synthesis and structure-activity relationships of 3',4'-fused dioxolane and dioxane derivatives (2002) Bioorg. Med. Chem. Lett, 12, pp. 121-124
dcterms.bibliographicCitationCarta, A., Paglietti, G., Rahbar Nikookar, M.E., Sanna, P., Sechi, L., Zanetti, S., Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity (2002) Eur. J. Med. Chem, 37, pp. 355-366
dcterms.bibliographicCitationClemons, K.V., Stevens, D.A., Efficacies of two novel azole derivatives each containing a morpholine ring, UR-9746 and UR-9751, against systemic murine coccidioidomycosis (1997) Antimicrob. Agents Chemother, 41, pp. 200-203
dcterms.bibliographicCitationDebono, M., Gordee, R.S., Antibiotics that inhibit fungal cell wall development (1994) Annu. Rev. Microbiol, 48, pp. 471-497
dcterms.bibliographicCitationDel Poeta, M., Schell, W.A., Dykstra, C.C., Jones, S., Tidwell, R.R., Czarny, A., Bajic, M., Perfect, J.R., Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents (1998) Antimicrob. Agents Chemother, 42, pp. 2495-2502
dcterms.bibliographicCitationDel Poeta, M., Schell, W.A., Dykstra, C.C., Jones, S.K., Tidwell, R.R., Kumar, A., Boykin, D.W., Perfect, J.R., In vitro antifungal activities of a series of dication-substituted carbazoles, furans, and benzimidazoles (1998) Antimicrob. Agents Chemother, 42, pp. 2503-2510
dcterms.bibliographicCitationDenning, D.W., Echinocandins and pneumocandins – –A new antifungal class with a novel mode of action (1997) J. Antimicrob. Chemother, 40, pp. 611-614
dcterms.bibliographicCitationDominguez, J.M., Kelly, V.A., Kinsman, O.S., Marriott, M.S., F. Gomez de las Heras, and J.J. Martin, Sordarins: A new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts (1998) Antimicrob. Agents Chemother, 42, pp. 2274-2278
dcterms.bibliographicCitationEbiike, H., Masubuchi, M., Liu, P., Kawasaki, K., Morikami, K., Sogabe, S., Hayase, M., Shimma, N., Design and synthesis of novel benzofurans as a new class of antifungal agents targeting fungal N-myristoyltransferase. Part 2 (2002) Bioorg. Med. Chem. Lett, 12, pp. 607-610
dcterms.bibliographicCitationEmami, S., Falahati, M., Banifatemi, A., Shafiee, A., Stereoselective synthesis and antifungal activity of (Z)-trans-3-azolyl-2-methylchromanone oxime ethers (2004) Bioorg. Med. Chem, 12, pp. 5881-5889
dcterms.bibliographicCitationFavre, B., Ryder, N.S., Characterization of squalene epoxidase activity from the dermatophyteTrichophyton rubrumand its inhibition by terbinafine and other antimycotic agents (1996) Antimicrob. Agents Chemother, 40, pp. 443-447
dcterms.bibliographicCitationFostel, J.M., Lartey, P.A., Emerging novel antifungal agents (2000) Drug. Discov. Today, 5, pp. 25-32
dcterms.bibliographicCitationGoker, H., Boykin, D.W., Yildiz, S., Synthesis and potent antimicrobial activity of some novel 2-phenyl or methyl-4H-1-benzopyran-4-ones carrying amidinobenzimidazoles (2005) Bioorg. Med. Chem, 13, pp. 1707-1714
dcterms.bibliographicCitationGokhale, V.M., Kulkarni, V.M., Selectivity analysis of 5-(arylthio)-2,4-diaminoquinazolines as inhibitors ofCandida albicansdihydrofolate reductase by molecular dynamics simulations (2000) J. Comput. Aided Mol. Des, 14, pp. 495-506
dcterms.bibliographicCitationHata, K., Kimura, J., Miki, H., Toyosawa, T., Moriyama, M., Katsu, K., Efficacy of ER-30346, a novel oral triazole antifungal agent, in experimental models of aspergillosis, candidiasis, and cryptococcosis (1996) Antimicrob. Agents Chemother, 40, pp. 2243-2247
dcterms.bibliographicCitationHerreros, E., Almela, M.J., Lozano, S., F. Gomez de las Heras, and D. Gargallo-Viola, Antifungal activities and cytotoxicity studies of six new azasordarins (2001) Antimicrob. Agents Chemother, 45, pp. 3132-3139
dcterms.bibliographicCitationHerreros, E., Martinez, C.M., Almela, M.J., Marriott, M.S., De Las Heras, F.G., Gargallo-Viola, D., Sordarins: In vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi (1998) Antimicrob. Agents Chemother, 42, pp. 2863-2869
dcterms.bibliographicCitationKamai, Y., Harasaki, T., Fukuoka, T., Ohya, S., Uchida, K., Yamaguchi, H., Kuwahara, S., In vitro and in vivo activities of CS-758 (R-120758), a new triazole antifungal agent (2002) Antimicrob. Agents Chemother, 46, pp. 367-370
dcterms.bibliographicCitationKhan, J.K., Montaseri, H., Poglod, M., Bu, H.Z., Zuo, Z., Salama, S.M., Daneshtalab, M., Micetich, R.G., Interspecies comparison of pharmacokinetics of the novel triazole antifungal agent SYN-2869 and its derivatives (2000) Antimicrob. Agents Chemother, 44, pp. 910-915
dcterms.bibliographicCitationKubo, I., Xiao, P., Fujita, K., Antifungal activity of octyl gallate: Structural criteria and mode of action (2001) Bioorg. Med. Chem. Lett, 11, pp. 347-350
dcterms.bibliographicCitationLal, B., Gund, V.G., Bhise, N.B., Gangopadhyay, A.K., Mannich reaction: An approach for the synthesis of water soluble mulundocandin analogues (2004) Bioorg. Med. Chem, 12, pp. 1751-1768
dcterms.bibliographicCitationLal, B., Gund, V.G., Gangopadhyay, A.K., Nadkarni, S.R., Dikshit, V., Chatterjee, D.K., Shirvaikar, R., Semisynthetic modifications of hemiaminal function at ornithine unit of mulundocandin, towards chemical stability and antifungal activity (2003) Bioorg. Med. Chem, 11, pp. 5189-5198
dcterms.bibliographicCitationLi, S., Zhang, Z., Cain, A., Wang, B., Long, M., Taylor, J., Antifungal activity of camptothecin, trifolin, and hyperoside isolated fromCamptotheca acuminata (2005) J. Agric. Food Chem, 53, pp. 32-37
dcterms.bibliographicCitationLopez, S.N., Castelli, M.V., Zacchino, S.A., Dominguez, J.N., Lobo, G., Charris-Charris, J., Cortes, J.C., Enriz, R.D., In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall (2001) Bioorg Med Chem, 9, pp. 1999-2013
dcterms.bibliographicCitationMandala, S.M., Thornton, R.A., Milligan, J., Rosenbach, M., Garcia-Calvo, M., Bull, H.G., Harris, G., Kurtz, M.B., Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase (1998) J. Biol. Chem, 273, pp. 14942-14949
dcterms.bibliographicCitationMandala, S.M., Thornton, R.A., Rosenbach, M., Milligan, J., Garcia-Calvo, M., Bull, H.G., Kurtz, M.B., Khafrefungin, a novel inhibitor of sphingolipid synthesis (1997) J. Biol. Chem, 272, pp. 32709-32714
dcterms.bibliographicCitationMasubuchi, K., Okada, T., Kohchi, M., Murata, T., Tsukazaki, M., Kondoh, O., Yamazaki, T., Shimma, N., Synthesis and antifungal activities of novel 1,3-beta-d-glucan synthase inhibitors. Part 2 (2001) Bioorg. Med. Chem. Lett, 11, pp. 1273-1276
dcterms.bibliographicCitationMasubuchi, M., Ebiike, H., Kawasaki, K., Sogabe, S., Morikami, K., Shiratori, Y., Tsujii, S., Shimma, N., Synthesis and biological activities of benzofuran antifungal agents targeting fungal N-myristoyltransferase (2003) Bioorg. Med. Chem, 11, pp. 4463-4478
dcterms.bibliographicCitationMasubuchi, M., Kawasaki, K., Ebiike, H., Ikeda, Y., Tsujii, S., Sogabe, S., Fujii, T., Shimma, N., Design and synthesis of novel benzofurans as a new class of antifungal agents targeting fungal N-myristoyltransferase. Part 1 (2001) Bioorg. Med. Chem. Lett, 11, pp. 1833-1837
dcterms.bibliographicCitationMatsumoto, M., Ishida, K., Konagai, A., Maebashi, K., Asaoka, T., Strong antifungal activity of SS750, a new triazole derivative, is based on its selective binding affinity to cytochrome P450 of fungi (2002) Antimicrob. Agents Chemother, 46, pp. 308-314
dcterms.bibliographicCitationMenozzi, G., Merello, L., Fossa, P., Schenone, S., Ranise, A., Mosti, L., Bondavalli, F., Tamburini, E., Synthesis, antimicrobial activity and molecular modeling studies of halogenated 4-[1H-imidazol-1-yl(phenyl)methyl]-1,5-diphenyl-1H-pyrazoles (2004) Bioorg. Med. Chem, 12, pp. 5465-5483
dcterms.bibliographicCitationMoreau, S., Varache-Lembege, M., Larrouture, S., Fall, D., Neveu, A., Deffieux, G., Vercauteren, J., Nuhrich, A., (2-Arylhydrazonomethyl)-substituted xanthones as antimycotics: Synthesisand fungistatic activity against Candida species (2002) Eur. J. Med. Chem, 37, pp. 237-253
dcterms.bibliographicCitationNam, N.H., Sardari, S., Selecky, M., Parang, K., Carboxylic acid and phosphate ester derivatives of fluconazole: Synthesis and antifungal activities (2004) Bioorg. Med. Chem, 12, pp. 6255-6269
dcterms.bibliographicCitationNimura, K., Niwano, Y., Ishiduka, S., Fukumoto, R., Comparison of in vitro antifungal activities of topical antimycotics launched in 1990s in Japan (2001) Int. J. Antimicrob. Agents, 18, pp. 173-178
dcterms.bibliographicCitationNiwano, Y., Kuzuhara, N., Goto, Y., Munechika, Y., Kodama, H., Kanai, K., Yoshida, M., Yamaguchi, H., Efficacy of NND-502, a novel imidazole antimycotic agent, in experimental models ofCandida albicansandAspergillus fumigatusinfections (1999) Int. J. Antimicrob. Agents, 12, pp. 221-228
dcterms.bibliographicCitationPanneerselvam, P., Nair, R.R., Vijayalakshmi, G., Subramanian, E.H., Sridhar, S.K., Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents (2005) Eur. J. Med. Chem, 40, pp. 225-229
dcterms.bibliographicCitationQuesnelle, C.A., Gill, P., Dodier, M., St Laurent, D., Serrano-Wu, M., Marinier, A., Martel, A., Balasubramanian, B.N., Sordaricin antifungal agents (2003) Bioorg. Med. Chem. Lett, 13, pp. 519-524
dcterms.bibliographicCitationRyu, C.K., Kang, H.Y., Yi, Y.J., Shin, K.H., Lee, B.H., Synthesis and antifungal activities of 5/6-arylamino-4,7-dioxobenzothiazoles (2000) Bioorg. Med. Chem. Lett, 10, pp. 1589-1591
dcterms.bibliographicCitationSheehan, D.J., Hitchcock, C.A., Sibley, C.M., Current and emerging azole antifungal agents (1999) Clin. Microbiol. Rev, 12, pp. 40-79
dcterms.bibliographicCitationStephens, C.E., Tanious, F., Kim, S., Wilson, W.D., Schell, W.A., Perfect, J.R., Franzblau, S.G., Boykin, D.W., Diguanidino and ‘reversed’ diamidino 2,5-diarylfurans as antimicrobial agents (2001) J. Med. Chem, 44, pp. 1741-1748
dcterms.bibliographicCitationTkacz, J.S., DiDomenico, B., Antifungals: What's in the pipeline (2001) Curr. Opin. Microbiol, 4, pp. 540-545
dcterms.bibliographicCitationTsuchimori, N., Hayashi, R., Kitamoto, N., Asai, K., Kitazaki, T., Iizawa, Y., Itoh, K., Okonogi, K., In vitro and in vivo antifungal activities of TAK-456, a novel oral triazole with a broad antifungal spectrum (2002) Antimicrob. Agents Chemother, 46, pp. 1388-1393
dcterms.bibliographicCitationUrbina, J.M., Cortes, J.C., Palma, A., Lopez, S.N., Zacchino, S.A., Enriz, R.D., Ribas, J.C., Kouznetzov, V.V., Inhibitors of the fungal cell wall. Synthesis of 4-aryl-4-N-arylamine-1-butenes and related compounds with inhibitory activities on beta(1–3) glucan and chitin synthases (2000) Bioorg. Med. Chem, 8, pp. 691-698
dcterms.bibliographicCitationVargas, M.L., Castelli, M.V., Kouznetsov, V.V., Urbina, G.J., Lopez, S.N., Sortino, M., Enriz, R.D., Zacchino, S., In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers (2003) Bioorg. Med. Chem, 11, pp. 1531-1550
dcterms.bibliographicCitationYalcin, I., Oren, I., Temiz, O., Sener, E.A., QSARs of some novel isosteric heterocyclics with antifungal activity (2000) Acta Biochim. Pol, 47, pp. 481-486
dcterms.bibliographicCitationYotsuji, A., Shimizu, K., Araki, H., Fujimaki, K., Nishida, N., Hori, R., Annen, N., Narita, H., T-8581, a new orally and parenterally active triazole antifungal agent: In vitro and in vivo evaluations (1997) Antimicrob. Agents Chemother, 41, pp. 30-34
dcterms.bibliographicCitationZhang, Y.Z., Sun, X., Zeckner, D.J., Sachs, R.K., Current, W.L., Chen, S.H., 8-Amido-Bearing pseudomycin B (PSB) analogue: Novel antifungal agents (2001) Bioorg. Med. Chem. Lett, 11, pp. 123-126
dcterms.bibliographicCitationAblordeppey, S.Y., Fan, P., Li, S., Clark, A.M., Hufford, C.D., Substituted indoloquinolines as new antifungal agents (2002) Bioorg. Med. Chem, 10, pp. 1337-1346
dcterms.bibliographicCitationSaha, A.K., Liu, L., Simoneaux, R.L., Kukla, M.J., Marichal, P., Odds, F., Novel antifungals based on 4-substituted imidazole: a combinatorial chemistry approach to lead discovery and optimization (2000) Bioorg. Med. Chem. Lett, 10, pp. 2175-2178
dcterms.bibliographicCitationBarrett, D., Tanaka, A., Harada, K., Ohki, H., Watabe, E., Maki, K., Ikeda, F., Synthesis and biological activity of novel macrocyclic antifungals: Acylated conjugates of the ornithine moiety of the lipopeptidolactone FR901469 (2001) Bioorg. Med. Chem. Lett, 11, pp. 479-482
dcterms.bibliographicCitationBryskier, A., Novelties in the field of anti-infectives in 1997 (1998) Clin. Infect. Dis, 27, pp. 865-883
dcterms.bibliographicCitationMartinez, A., Ferrer, S., Santos, I., Jimenez, E., Sparrowe, J., Regadera, J., De Las, F.G., Heras, and D. Gargallo-Viola, Antifungal activities of two new azasordarins, GW471552 and GW471558, in experimental models of oral and vulvovaginal candidiasis in immunosuppressed rats (2001) Antimicrob. Agents Chemother, 45, pp. 3304-3309
dcterms.bibliographicCitationSerrano-Wu, M.H., St Laurent, D.R., Mazzucco, C.E., Stickle, T.M., Barrett, J.F., Vyas, D.M., Balasubramanian, B.N., Oxime derivatives of sordaricin as potent antifungal agents (2002) Bioorg. Med. Chem. Lett, 12, pp. 943-946
dcterms.bibliographicCitationTuran-Zitouni, G., Kaplancikli, Z.A., Yildiz, M.T., Chevallet, P., Kaya, D., Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl)acetamido]thio-4H -1,2,4-triazole derivatives (2005) Eur. J. Med. Chem, 40, pp. 607-613
dcterms.bibliographicCitationNa, Y.M., Le Borgne, M., Pagniez, F., Le Baut, G., Le Pape, P., Synthesis and antifungal activity of new 1-halogenobenzyl-3-imidazolylmethylindole derivatives (2003) Eur. J. Med. Chem, 38, pp. 75-87
dcterms.bibliographicCitation(1996) The Merck Index, , Chapman & Hall, New York:
dcterms.bibliographicCitationRuiz-Herrera, J., San-Blas, G., Chitin synthesis as target for antifungal drugs (2003) Curr. Drug Targets Infect. Disord, 3, pp. 77-91
dcterms.bibliographicCitationPauling, L., (1939) The Nature of Chemical Bond, , Cornell University Press, Ithaca, NY:
dcterms.bibliographicCitationBaldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H., Assessing the accuracy of prediction algorithms for classification: An overview (2000) Bioinformatics, 16, pp. 412-424
dcterms.bibliographicCitationRandić, M., Resolution of ambiguities in structure-property studies by use of orthogonal descriptors (1991) J. Chem. Inf. Comput. Sci, 31, pp. 311-320
dcterms.bibliographicCitationRandić, M., Orthogonal molecular descriptors (1991) New J Chem, 15, pp. 517-525
dcterms.bibliographicCitationRandić, M., Correlation of enthalpy of octanes with orthogonal connectivity indices (1991) J. Mol. Struct. (Theochem), 233, pp. 45-59
dcterms.bibliographicCitationEstrada, E., Uriarte, E., Recent advances on the role of topological indices in drug discovery research (2001) Curr. Med. Chem, 8, pp. 1573-1588
dcterms.bibliographicCitationEstrada, E., Vilar, S., Uriarte, E., Gutierrez, Y., In silico studies toward the discovery of new anti-HIV nucleoside compounds with the use of TOPS-MODE and 2D/3D connectivity indices. 1. Pyrimidyl derivatives (2002) J. Chem. Inf. Comput. Sci, 42, pp. 1194-1203
dcterms.bibliographicCitationWold, S., Erikson, L., (1995) Chemometric Methods in Molecular Design, pp. 309-318. , van de Waterbeemd H., (ed), VCH Publishers, Weinheim:
dcterms.bibliographicCitationGolbraikh, A., Tropsha, A., Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection (2002) Mol. Divers, 5, pp. 231-243
dcterms.bibliographicCitationLoeffler, J., Stevens, D.A., Antifungal drug resistance (2003) Clin. Infect. Dis, 36, pp. S31-S41
dcterms.bibliographicCitationNosanchuk, J.D., Current status and future of antifungal therapy for systemic mycoses (2006) Recent Patents Anti-Infective Drug Discov, 1, pp. 75-84
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1080/1062936X.2015.1104517
dc.subject.keywordsAtom-based quadratic indices
dc.subject.keywordsLinear discriminant analysis
dc.subject.keywordsQSAR model
dc.subject.keywordsQuBiLs-MAS software
dc.subject.keywordsVrtual screening, antifungal agent
dc.subject.keywordsAntifungal agent
dc.subject.keywordsChemistry
dc.subject.keywordsComputer simulation
dc.subject.keywordsDiscriminant analysis
dc.subject.keywordsDrug development
dc.subject.keywordsQuantitative structure activity relation
dc.subject.keywordsStatistical model
dc.subject.keywordsAntifungal Agents
dc.subject.keywordsComputer simulation
dc.subject.keywordsDiscriminant analysis
dc.subject.keywordsDrug Discovery
dc.subject.keywordsLinear Models
dc.subject.keywordsQuantitative Structure-Activity Relationship
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesAntifungal Agents
dc.type.spaArtículo
dc.identifier.orcid6506280403
dc.identifier.orcid55665599200
dc.identifier.orcid55363486500
dc.identifier.orcid55683426700
dc.identifier.orcid56674579200
dc.identifier.orcid9434652400
dc.identifier.orcid57193209050
dc.identifier.orcid7004872108
dc.identifier.orcid6701762262


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.