Mostrar el registro sencillo del ítem

dc.creatorMontoya O.D.
dc.creatorGil-González W.
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:32:48Z
dc.date.available2020-03-26T16:32:48Z
dc.date.issued2019
dc.identifier.citationElectric Power Systems Research; Vol. 175
dc.identifier.issn03787796
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9028
dc.description.abstractThis paper proposes a logarithmic transformation of voltages (LTVM) for the power flow in DC grids. This problem is non-linear due to the presence of constant power loads (CPLs), which also introduce a negative resistance effect that can create numerical instability for conventional algorithms. The proposed methodology is applied to dc-microgrids, dc-distribution and multi-terminal high voltage DC transmission (MT-HVDC). Two main approximations are presented and compared in terms of computational performance and the accuracy of the solution. Simulation results performed in Matlab/Octave demonstrate the advantages of the proposed methodology using a complete set of test systems, from low to high voltage applications. The proposed methodology does not require any consideration about the topology of the grid (radial or meshed) or the number of constant power loads. © 2019 Elsevier B.V.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85066829378&doi=10.1016%2fj.epsr.2019.105887&partnerID=40&md5=03320c1785e20ad5ec2478f1c45ae2a5
dc.titlePower flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes
dcterms.bibliographicCitationSomerville, B., Constable, G., A Century of Innovation: Twenty Engineering Achievements that Transformed our Lives (2003), 1st edition Joseph Henry Press, National Academy of Engineering
dcterms.bibliographicCitationElsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: an overview (2015) Electr. Power Syst. Res., 119, pp. 407-417
dcterms.bibliographicCitationGavriluta, C., Candela, I., Citro, C., Luna, A., Rodriguez, P., Design considerations for primary control in multi-terminal VSC-HVDC grids (2015) Electr. Power Syst. Res., 122, pp. 33-41
dcterms.bibliographicCitationHertem, D.V., Ghandhari, M., Multi-terminal VSC HVDC for the European supergrid: obstacles (2010) Renew. Sustain. Energy Rev., 14 (9), pp. 3156-3163
dcterms.bibliographicCitationMontoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model (2018) IEEE Trans. Circuits Syst. II, p. 1
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: a quadratic convex approximation (2018) IEEE Trans. Circuits Syst. II, p. 1
dcterms.bibliographicCitationGarcés, A., Herrera, J., Gil-González, W., Montoya, O., Small-signal stability in low-voltage dc-grids (2018) 2018 IEEE ANDESCON, IEEE, pp. 1-5
dcterms.bibliographicCitationSimpson-Porco, J.W., Dorfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II Express Briefs, 62 (8), pp. 811-815
dcterms.bibliographicCitationSanchez, S., Ortega, R., Gri no, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I Regul. Pap., 61 (7), pp. 2204-2211
dcterms.bibliographicCitationBarabanov, N., Ortega, R., Gri no, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I Regul. Pap., 63 (1), pp. 114-121
dcterms.bibliographicCitationGarces, A., On convergence of Newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5770-5777
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153
dcterms.bibliographicCitationGan, L., Low, S.H., Optimal power flow in direct current networks (2014) IEEE Trans. Power Syst., 29 (6), pp. 2892-2904
dcterms.bibliographicCitationMontoya, O.D., Grisales-Nore na, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381
dcterms.bibliographicCitationGarces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal HVDC systems considering DC/DC converters (2016) 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217
dcterms.bibliographicCitationLi, Z., Yu, J., Wu, Q.H., Approximate linear power flow using logarithmic transform of voltage magnitudes with reactive power and transmission loss consideration (2018) IEEE Trans. Power Syst., 33 (4), pp. 4593-4603
dcterms.bibliographicCitationMontoya, O.D., On linear analysis of the power flow equations for DC and AC grids with CPLs (2019) IEEE Trans. Circuits Syst. II, p. 1
dcterms.bibliographicCitationMontoya, O.D., Garrido, V.M., Gil-González, W., Grisales-Nore na, L., Power flow analysis in DC grids: two alternative numerical methods (2019) IEEE Trans. Circuits Syst. II, p. 1
dcterms.bibliographicCitationGrisales-Nore na, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (1018), pp. 1-27
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., p. 1
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garrido, V.M., Voltage stability margin in DC grids with CPLs: a recursive Newton-Raphson approximation (2019) IEEE Trans. Circuits Syst. II, p. 1
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.epsr.2019.105887
dc.subject.keywordsDirect-current networks
dc.subject.keywordsLinear power flow analysis
dc.subject.keywordsLogarithmic transformation of voltage magnitudes
dc.subject.keywordsProcessing times
dc.subject.keywordsVoltage estimation errors
dc.subject.keywordsElectric load flow
dc.subject.keywordsElectric power transmission networks
dc.subject.keywordsLinear transformations
dc.subject.keywordsMathematical transformations
dc.subject.keywordsMATLAB
dc.subject.keywordsDirect current
dc.subject.keywordsPower flow analysis
dc.subject.keywordsProcessing time
dc.subject.keywordsVoltage estimation
dc.subject.keywordsVoltage magnitude
dc.subject.keywordsHVDC power transmission
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid36449223500


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.