Show simple item record

A Hooke's law-based approach to protein folding rate

dc.creatorRuiz-Blanco Y.B.
dc.creatorMarrero-Ponce Y.
dc.creatorPrieto P.J.
dc.creatorSalgado J.
dc.creatorGarcía Y.
dc.creatorSotomayor-Torres C.M.
dc.date.accessioned2020-03-26T16:32:47Z
dc.date.available2020-03-26T16:32:47Z
dc.date.issued2015
dc.identifier.citationJournal of Theoretical Biology; Vol. 364, pp. 407-417
dc.identifier.issn00225193
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9020
dc.description.abstractKinetics is a key aspect of the renowned protein folding problem. Here, we propose a comprehensive approach to folding kinetics where a polypeptide chain is assumed to behave as an elastic material described by the Hooke[U+05F3]s law. A novel parameter called elastic-folding constant results from our model and is suggested to distinguish between protein with two-state and multi-state folding pathways. A contact-free descriptor, named folding degree, is introduced as a suitable structural feature to study protein-folding kinetics. This approach generalizes the observed correlations between varieties of structural descriptors with the folding rate constant. Additionally several comparisons among structural classes and folding mechanisms were carried out showing the good performance of our model with proteins of different types. The present model constitutes a simple rationale for the structural and energetic factors involved in protein folding kinetics. © 2014 Elsevier Ltd.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAcademic Press
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84910086539&doi=10.1016%2fj.jtbi.2014.09.002&partnerID=40&md5=d32479becf63730a4252ec30e659e982
dc.titleA Hooke's law-based approach to protein folding rate
dcterms.bibliographicCitationBaker, D., A surprising simplicity to protein folding (2000) Nature, 405, pp. 39-42
dcterms.bibliographicCitationBasilevsky, A., (1994) Statistical Factor Analysis and Related Methods, , Wiley, New York
dcterms.bibliographicCitationBergasa-Caceres, F., Rabitz, H.A., Two-state folding kinetics of small proteins in the sequential collapse model: dependence of the folding rate on contact order and temperature (2003) J. Phys. Chem. B, 107, pp. 12874-12877
dcterms.bibliographicCitationBogatyreva, N.S., Osypov, A.A., Ivankov, D.N., KineticDB: a database of protein folding kinetics (2009) Nucleic Acids Res., 37, pp. D342-D346
dcterms.bibliographicCitationBryngelson, J.D., Wolynes, P.G., Intermediates and barrier crossing in a random energy model (with applications to protein folding) (1989) J. Phys. Chem., 93, pp. 6902-6915
dcterms.bibliographicCitationChen, W., Feng, P.-M., Lin, H., Chou, K.-C., IRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition (2013) Nucleic Acids Res., 41, p. e68
dcterms.bibliographicCitationChou, K.-C., Some remarks on protein attribute prediction and pseudo amino acid composition (2011) J. Theor. Biol., 273, pp. 236-247
dcterms.bibliographicCitationChou, K.-C., Zhang, C.-T., Prediction of protein structural classes (1995) Crit. Rev. Biochem. Mol. Biol., 30, pp. 275-349
dcterms.bibliographicCitationChou, K.C., Identification of low-frequency modes in protein molecules (1983) Biochem. J., 215, pp. 465-469
dcterms.bibliographicCitationChou, K.C., Low-frequency vibrations of helical structures in protein molecules (1983) Biochem. J., 209, pp. 573-580
dcterms.bibliographicCitationChou, K.C., Low-frequency vibrations of DNA molecules (1984) Biochem. J., 221, pp. 27-31
dcterms.bibliographicCitationChou, K.C., Low-frequency motions in protein molecules. Beta-sheet and beta-barrel (1985) Biophys. J., 48, pp. 289-297
dcterms.bibliographicCitationChou, K.C., Maggiora, G.M., Mao, B., Quasi-continuum models of twist-like and accordion-like low-frequency motions in DNA (1989) Biophys. J., 56, pp. 295-305
dcterms.bibliographicCitationDebe, D.A., Goddard, W.A., First principles prediction of protein folding rates (1999) J. Mol. Biol., 294, pp. 619-625
dcterms.bibliographicCitationDill, K.A., Bromberg, S., (2003) Polymer Chains can be Modelled as Random Flights. Molecular Driving Forces. Statistical Thermodynamics in Chemistry and Biology, pp. 609-614. , Garland Science, New York
dcterms.bibliographicCitationDill, K.A., Bromberg, S., (2003) Polymeric Material are Often Elastic. Molecular Driving Forces. Statistical Thermodynamics in Chemistry and Biology, , Garland Science, New York
dcterms.bibliographicCitationDill, K.A., Fiebig, K.M., Chan, H.S., Cooperativity in protein-folding kinetics (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 1942-1946
dcterms.bibliographicCitationDing, H., Deng, E.-Z., Yuan, L.-F., Liu, L., Lin, H., Chen, W., Chou, K.-C., ICTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels (2014) BioMed Res. Int., 2014. , Article ID 286419. 10.1155/2014/286419
dcterms.bibliographicCitationDinner, A.R., Karplus, M., The thermodynamics and kinetics of protein folding: a lattice model analysis of multiple pathways with intermediates (1999) J. Phys. Chem. B, 103, pp. 7976-7994
dcterms.bibliographicCitationDinner, A.R., Karplus, M., The roles of stability and contact order in determining protein folding rates (2001) Nat. Struct. Biol., 8, pp. 21-22
dcterms.bibliographicCitationEsmaeili, M., Mohabatkar, H., Mohsenzadeh, S., Using the concept of Chou[U+05F3]s pseudo amino acid composition for risk type prediction of human papillomaviruses (2010) J. Theor. Biol., 263, pp. 203-209
dcterms.bibliographicCitationFersht, A.R., Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism (2000) Proc. Natl. Acad. Sci., 97, pp. 1525-1529
dcterms.bibliographicCitationFiebig, K.M., Dill, K.A., Protein core assembly processes (1993) J. Chem. Phys., 98, pp. 3475-3487
dcterms.bibliographicCitationFrank, I.E., Friedman, J.H., A statistical view of some chemometrics regression tools (1993) Technometrics, 35, pp. 109-135
dcterms.bibliographicCitationFranke, R., (1984) Theoretical Drug Design Methods, , Elsevier, Amsterdam
dcterms.bibliographicCitationFriedman, M., The use of ranks to avoid the assumption of normality implicit in the analysis of variance (1937) J. Am. Stat. Assoc., 32, pp. 675-701
dcterms.bibliographicCitationGalzitskaya, O.V., Influence of conformational entropy on the protein folding rate (2010) Entropy, 12, pp. 961-982
dcterms.bibliographicCitationGalzitskaya, O.V., Estimation of protein folding rate from Monte Carlo simulations and entropy capacity (2010) Curr. Protein Pept. Sci., 11, pp. 523-537
dcterms.bibliographicCitationGalzitskaya, O.V., Garbuzynskiy, S.O., Ivankov, D.N., Finkelstein, A.V., Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics (2003) PROTEINS: Struct. Funct. Genet., 51, pp. 162-166
dcterms.bibliographicCitationGeorgiou, D.N., Karakasidis, T.E., Nieto, J.J., Torres, A., Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou[U+05F3]s pseudo amino acid composition (2009) J. Theor. Biol., 257, pp. 17-26
dcterms.bibliographicCitationGhosh, K., Dill, K.A., Computing protein stabilities from their chain lengths (2009) Proc. Natl. Acad. Sci., 106, pp. 10649-10654
dcterms.bibliographicCitationGordon, G., Extrinsic electromagnetic fields, low frequency (phonon) vibrations, and control of cell function: a non-linear resonance system (2008) J. Biomed. Sci. Eng. (JBiSE), 1, pp. 152-156
dcterms.bibliographicCitationGordon, G.A., Designed electromagnetic pulsed therapy: clinical applications (2007) J. Cell. Physiol., 212, pp. 579-582
dcterms.bibliographicCitationGromiha, M.M., Importance of native-state topology for determining the folding rate of two-state proteins (2003) J. Chem. Inf. Comput. Sci., 43, pp. 1481-1485
dcterms.bibliographicCitationGromiha, M.M., A statistical model for predicting protein folding rates from amino acid sequence with structural class information (2005) J. Chem. Inf. Model., 45, pp. 494-501
dcterms.bibliographicCitationGromiha, M.M., Multiple contact network is a key determinant to protein folding rates (2009) J. Chem. Inf. Model., 49, pp. 1130-1135
dcterms.bibliographicCitationGromiha, M.M., Selvaraj, S., Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction (2001) J. Mol. Biol., 310, pp. 27-32
dcterms.bibliographicCitationGuo, S.-H., Deng, E.-Z., Xu, L.-Q., Ding, H., Lin, H., Chen, W., Chou, K.-C., INuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition (2014) Bioinformatics, 30, pp. 1522-1529
dcterms.bibliographicCitationHodges, J.L., Lehmann, E.L., Ranks methods for combination of independent experiments in analysis of variance (1962) Ann. Math. Stat., 33, pp. 482-497
dcterms.bibliographicCitationHolm, S., A simple sequentially rejective multiple test procedure (1979) Scand. J. Stat., 6, pp. 65-70
dcterms.bibliographicCitationIman, R.L., Davenport, J.M., Approximations of the critical region of the Friedman statistic (1980) Commun. Stat., 9, pp. 571-595
dcterms.bibliographicCitationIvankov, D.N., Finkelstein, A.V., Prediction of protein folding rates from the amino acid sequence-predicted secondary structure (2004) Proc. Natl. Acad. Sci., 101, pp. 8942-8944
dcterms.bibliographicCitationIvankov, D.N., Garbuzynskiy, S.O., Alm, E., Plaxco, K.W., Baker, D., Finkelstein, A.V., Contact order revisited: influence of protein size on the folding rate (2003) Protein Sci., 12, pp. 2057-2062
dcterms.bibliographicCitationJames, H.M., Guth, E., Theory of the elastic properties of rubber (1943) J. Chem. Phys., 11, pp. 455-482
dcterms.bibliographicCitationKim, M.K., Chirikjiana, G.S., Jernigan, R.L., Elastic models of conformational transitions in macromolecules (2002) J. Mol. Graph. Model., 21, pp. 151-160
dcterms.bibliographicCitationKlimov, D.K., Thirumalai, D., Viscosity dependence of the folding rates of proteins (1997) Phys. Rev. Lett., 79, pp. 317-320
dcterms.bibliographicCitationKmiecik, S., Kolinski, A., Characterization of protein-folding pathways by reduced-space modeling (2007) Proc. Natl. Acad. Sci., 104, pp. 12330-12335
dcterms.bibliographicCitationLei, H., Duan, Y., Protein folding and unfolding by all-atom molecular dynamics simulations (2008) Molecular Modeling of Proteins, 443, pp. 277-297. , Humana Press, Totowa, NJ
dcterms.bibliographicCitationLevitt, M., A simplified representation of protein conformations for rapid simulation of protein folding (1976) J. Mol. Biol., 104, pp. 59-107
dcterms.bibliographicCitationMadkan, A., Blank, M., Elson, E., Geddis, M.S., Goodman, R., Steps to the clinic with ELF EMF (2009) Nat. Sci., 1
dcterms.bibliographicCitationMakarov, D.E., Keller, C.A., Plaxco, K.W., Metiu, H., How the folding rate constant of simple, single-domain proteins depends on the number of native contacts (2002) Proc. Natl. Acad. Sci., 99, pp. 3535-3539
dcterms.bibliographicCitationMalinowski, E.R., Howery, D.G., (1980) Factor Analysis in Chemistry, , Wiley-Interscience, New York
dcterms.bibliographicCitationMarrero-Ponce, Y., Linear Indices of the ""molecular pseudograph[U+05F3]s atom adjacency matrix"": definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors (2004) J. Chem. Inf. Comput. Sci., 44, pp. 2010-2026
dcterms.bibliographicCitationMaxwell, K.L., Wildes, D., Afsar, A.Z., Rios, M.A.D.L., Brown, A.G., Friel, T., Hedberg, L., Plaxco, K.W., Protein folding: defining a ""standard"" set of experimental conditions and a preliminary kinetic data set of two-state proteins (2005) Protein Sci., 14, pp. 602-616
dcterms.bibliographicCitationMi, D., Liu, G.R., Wang, J.-S., Li, Z.R., Relationships between the folding rate constant and the topological parameters of small two-state proteins based on general random walk model (2006) J. Theor. Biol., 241, pp. 152-157
dcterms.bibliographicCitationMicheletti, C., Prediction of folding rates and transition-state placement from native-state geometry (2003) PROTEINS: Struct. Funct. Genet., 51, pp. 74-84
dcterms.bibliographicCitationMin, J.-L., Xiao, X., Chou, K.-C., IEzy-Drug: a web server for identifying the interaction between enzymes and drugs in cellular networking (2013) BioMed Res. Int., 2013. , Article ID 701317. 10.1155/2013/701317
dcterms.bibliographicCitationMuñoz, V., Eaton, W.A., A simple model for calculating the kinetics of protein folding from three-dimensional structures (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 11311-11316
dcterms.bibliographicCitationNaganathan, A.N., Muñoz, V., Scaling of folding times with protein size (2005) J. Am. Chem. Soc., 127, pp. 480-481
dcterms.bibliographicCitationNaganathan, A.N., Doshi, U., Muñoz, V., Protein folding kinetics: barrier effects in chemical and thermal denaturation experiments (2007) J. Am. Chem. Soc., 129, pp. 5673-5682
dcterms.bibliographicCitationNolting, B., Schalike, W., Hampel, P., Grundig, F., Gantert, S., Sips, N., Bandlow, W., Qi, P.X., Structural determinants of the rate of protein folding (2003) J. Theor. Biol., 223, pp. 299-307
dcterms.bibliographicCitationOnuchic, J.N., Socci, N.D., Luthey-Schulten, Z., Wolynes, P.G., Protein folding funnels: the nature of the transition state ensemble (1996) Fold. Des., 1, pp. 441-450
dcterms.bibliographicCitationOuyang, Z., Liang, J., Predicting protein folding rates from geometric contact and amino acid sequence (2008) Protein Sci., 17, pp. 1256-1263
dcterms.bibliographicCitationPlaxco, K.W., Simons, K.T., Baker, D., Contact order, transition state placement and the refolding rates of single domain proteins (1998) J. Mol. Biol., 277, pp. 985-994
dcterms.bibliographicCitationPlaxco, K.W., Simons, K.T., Ruczinski, I., Baker, D., Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics (2000) Biochemistry, 39, pp. 11177-11183
dcterms.bibliographicCitationPunta, M., Rost, B., Protein folding rates estimated from contact predictions (2005) J. Mol. Biol., 348, pp. 507-512
dcterms.bibliographicCitationQi, X., Portman, J.J., Excluded volume, local structural cooperativity, and the polymer physics of protein folding rates (2007) Proc. Natl. Acad. Sci., 104, pp. 10841-10846
dcterms.bibliographicCitationQiu, W.-R., Xiao, X., Chou, K.-C., IRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components (2014) Int. J. Mol. Sci., 15, pp. 1746-1766
dcterms.bibliographicCitationQiu, W.-R., Xiao, X., Lin, W.-Z., Chou, K.-C., IMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach (2014) BioMed Res. Int., 2014. , Article ID 947416. 10.1155/2014/947416
dcterms.bibliographicCitationRuiz-Blanco, Y.B., García, Y., Sotomayor-Torres, C.M., Marrero-Ponce, Y., New Set of 2D/3D Thermodynamic Indices for Proteins. A Formalism Based on ""Molten Globule"" Theory (2010) Physics Procedia, 8, pp. 63-72
dcterms.bibliographicCitationRuiz-Blanco, Y.B., Marrero-Ponce, Y., Paz, W., García, Y., Salgado, J., Global stability of protein folding from an empirical free energy function (2013) J. Theor. Biol., 321, pp. 44-53
dcterms.bibliographicCitationRuiz-Blanco, Y.B., Marrero-Ponce, Y., García, Y., Puris, A., Bello, R., Green, J., Sotomayor-Torres, C.M., A physics-based scoring function for protein structural decoys: Dynamic testing on targets of CASP-ROLL (2014) Chemical Physics Letters, pp. 135-140
dcterms.bibliographicCitationSancho, D.D., Doshi, U., Muñoz, V., Protein folding rates and stability: how much is there beyond size? (2009) J. Am. Chem. Soc., 131, pp. 2074-2075
dcterms.bibliographicCitationShakhnovich, E.I., Modeling protein folding: the beauty and power of simplicity (1996) Fold. Des., 1, pp. R50-R54
dcterms.bibliographicCitationShakhnovich, E.I., Theoretical studies of protein-folding thermodynamics and kinetics (1997) Curr. Opin. Struct. Biol., 7, pp. 29-40
dcterms.bibliographicCitationSheskin, D., (2006) Handbook of Parametric and Nonparametric Statistical Procedures, , Chapman and Hall, Florida
dcterms.bibliographicCitationShoemaker, B.A., Wang, J., Wolynes, P.G., Structural correlations in protein folding funnels (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 777-782
dcterms.bibliographicCitationShoemaker, B.A., Wang, J., Wolynes, P.G., Exploring structures in protein folding funnels with free energy functional: the transition state ensemble (1999) J. Mol. Biol., 287, pp. 657-694
dcterms.bibliographicCitationShortle, D., The denatured state (the other half of the folding equation) and its role in protein stability (1996) FASEB J., 10, pp. 27-34
dcterms.bibliographicCitationSmith, L.J., Fiebig, K.M., Schwalbe, H., Dobson, C.M., The concept of a random coil residual structure in peptides and denatured proteins (1996) Fold. Des., 1, pp. R95-R106
dcterms.bibliographicCitationSocci, N.D., Onuchic, J.N., Wolynes, P.G., Diffusive dynamics of the reaction coordinate for protein folding funnels (1996) J. Chem. Phys., 104, pp. 5860-5868
dcterms.bibliographicCitationStatsoft, 2001. STATISTICA version 6.0. Tulsa
dcterms.bibliographicCitationWeikl, T.R., Dill, K.A., Folding rates and low-entropy-loss routes of two-state proteins (2003) J. Mol. Biol., 329, pp. 585-598
dcterms.bibliographicCitationWilcoxon, F., Individual comparisons by ranking methods (1945) Biom. Bull., 1, pp. 80-83
dcterms.bibliographicCitationZagrovic, B., Snow, C.D., Shirts, M.R., Pande, V.S., Simulation of folding of a small alpha-helical protein in atomistic detail using worldwidedistributed computing (2002) J. Mol. Biol., 323, pp. 927-937
dcterms.bibliographicCitationZhou, H., Zhou, Y., Folding rate prediction using total contact distance (2002) Biophys. J., 82, pp. 458-463
dcterms.bibliographicCitationZimmermann, O., Hansmann, U.H.E., Understanding protein folding: small proteins in silico (2008) Biochim. Biophys. Acta, 1784, pp. 252-258
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.jtbi.2014.09.002
dc.subject.keywordsElastic folding constant
dc.subject.keywordsFolding degree
dc.subject.keywordsFolding kinetics
dc.subject.keywordsPROTDCAL
dc.subject.keywordsPolypeptide
dc.subject.keywordsDNA
dc.subject.keywordsProtein
dc.subject.keywordsEnergetics
dc.subject.keywordsModeling
dc.subject.keywordsPeptide
dc.subject.keywordsProtein
dc.subject.keywordsReaction kinetics
dc.subject.keywordsAmino acid sequence
dc.subject.keywordsArticle
dc.subject.keywordsElasticity
dc.subject.keywordsProtein folding
dc.subject.keywordsProtein structure
dc.subject.keywordsStructure analysis
dc.subject.keywordsTheoretical model
dc.subject.keywordsChemical model
dc.subject.keywordsChemistry
dc.subject.keywordsComputer simulation
dc.subject.keywordsKinetics
dc.subject.keywordsProtein secondary structure
dc.subject.keywordsThermodynamics
dc.subject.keywordsComputer simulation
dc.subject.keywordsDNA
dc.subject.keywordsKinetics
dc.subject.keywordsModels, Chemical
dc.subject.keywordsProtein folding
dc.subject.keywordsProtein Structure, Secondary
dc.subject.keywordsProteins
dc.subject.keywordsThermodynamics
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesDNA, 9007-49-2; protein, 67254-75-5; DNA; Proteins
dc.type.spaArtículo
dc.identifier.orcid36933887400
dc.identifier.orcid55665599200
dc.identifier.orcid53878266200
dc.identifier.orcid7102811634
dc.identifier.orcid36945042600
dc.identifier.orcid35403074800


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/