Mostrar el registro sencillo del ítem

dc.creatorGil-González, Walter
dc.creatorMontoya O.D.
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:32:46Z
dc.date.available2020-03-26T16:32:46Z
dc.date.issued2019
dc.identifier.citationElectric Power Systems Research; Vol. 175
dc.identifier.issn03787796
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9017
dc.description.abstractThis paper proposes a direct power control for electrical energy storage systems (EESS) in ac microgrids. This strategy allows managing instantaneous active and reactive power without using a conventional inner-loop current regulator and without a phase-locked loop, increasing the reliability of the system while reducing investment costs. PI passivity-based control (PI-PBC) is selected to control the direct power model of EESS. This is because their models exhibit a port-Hamiltonian formulation in open-loop, and PI-PBC exploits this formulation to design a PI controller, which guarantees global asymptotically stability in closed-loop in the sense of Lyapunov. Simulations tested the proposed model in a microgrid and compared with conventional vector oriented controls in a dq reference frame and a direct power model controlled via feedback linearization (FL). PI-PBC has a better performance than other two controllers in all considered scenarios. Simulation results have conducted through MATLAB/SIMULINK software by using the SimPowerSystem toolbox. © 2019 Elsevier B.V.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85067625974&doi=10.1016%2fj.epsr.2019.105885&partnerID=40&md5=2d6229ffff15e246faa086da2f29e191
dc.titleDirect power control of electrical energy storage systems: A passivity-based PI approach
dcterms.bibliographicCitationAkinyele, D., Rayudu, R., Review of energy storage technologies for sustainable power networks (2014) Sustain. Energy Technol. Assess., 8, pp. 74-91
dcterms.bibliographicCitationParra, D., Swierczynski, M., Stroe, D.I., Norman, S.A., Abdon, A., Worlitschek, J., O'Doherty, T., Zhang, X., An interdisciplinary review of energy storage for communities: challenges and perspectives (2017) Renew. Sustain. Energy Rev., 79, pp. 730-749
dcterms.bibliographicCitationZakeri, B., Syri, S., Electrical energy storage systems: A comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev., 42, pp. 569-596
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garcés, A., Escobar, A., Grisales, L.F., Nonlinear control for battery energy storage systems in power grids (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70
dcterms.bibliographicCitationGil-González, Montoya, O.D., Active and reactive power conditioning using SMES devices with PMW-CSC: a feedback nonlinear control approach (2019) Ain Shams Eng. J.
dcterms.bibliographicCitationPlanas, E., Andreu, J., Gárate, J.I., de Alegría, I.M., Ibarra, E., AC and DC technology in microgrids: a review (2015) Renew. Sustain. Energy Rev., 43, pp. 726-749
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Distributed energy resources integration in single-phase microgrids: an application of IDA-PBC and PI-PBC approaches (2019) Int. J. Electr. Power Energy Syst., 112, pp. 221-231
dcterms.bibliographicCitationAly, M.M., Abdel-Akher, M., Said, S.M., Senjyu, T., A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support (2016) Int. J. Electr. Power Energy Syst., 83, pp. 485-494
dcterms.bibliographicCitationGil-González, W., Montoya, Danilo, O., Passivity-based PI control of a SMES system to support power in electrical grids: a bilinear approach (2018) J. Energy Storage, 18, pp. 459-466. , http://www.sciencedirect.com/science/article/pii/S2352152X18300483
dcterms.bibliographicCitationRahim, A., Nowicki, E., Supercapacitor energy storage system for fault ride-through of a dfig wind generation system (2012) Energy Convers. Manag., 59, pp. 96-102
dcterms.bibliographicCitationOrtega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380
dcterms.bibliographicCitationShi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv., 23 (4), pp. 2097-2104
dcterms.bibliographicCitationShi, J., Zhang, L., Gong, K., Liu, Y., Zhou, A., Zhou, X., Tang, Y., Li, J., Improved discretization-based decoupled feedback control for a series-connected converter of SCC (2016) IEEE Trans. Appl. Supercond., 26 (7), pp. 1-6
dcterms.bibliographicCitationAli, M.H., Park, M., Yu, I.K., Murata, T., Tamura, J., Improvement of wind-generator stability by fuzzy-logic-controlled smes (2009) IEEE Trans. Ind. Appl., 45 (3), pp. 1045-1051
dcterms.bibliographicCitationMohammedi, M., Kraa, O., Becherif, M., Aboubou, A., Ayad, M., Bahri, M., Fuzzy logic and passivity-based controller applied to electric vehicle using fuel cell and supercapacitors hybrid source (2014) Energy Proc., 50, pp. 619-626
dcterms.bibliographicCitationWang, S., Jin, J., Design and analysis of a fuzzy logic controlled smes system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5
dcterms.bibliographicCitationNguyen, T.T., Yoo, H.J., Kim, H.M., Applying model predictive control to SMES system in microgrids for eddy current losses reduction (2016) IEEE Trans. Appl. Supercond., 26 (4), pp. 1-5
dcterms.bibliographicCitationShi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364
dcterms.bibliographicCitationGil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Control for EESS in three-phase microgrids under time-domain reference frame via PBC theory (2019) IEEE Trans. Circuits Syst. II, p. 1
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Serra, F., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II, 65 (12), pp. 2003-2007
dcterms.bibliographicCitationLin, X., Lei, Y., Coordinated control strategies for SMES-battery hybrid energy storage systems (2017) IEEE Access, 5, pp. 23452-23465
dcterms.bibliographicCitationHou, R., Song, H., Nguyen, T.-T., Qu, Y., Kim, H.-M., Robustness improvement of superconducting magnetic energy storage system in microgrids using an energy shaping passivity-based control strategy (2017) Energies, 10 (5), p. 671
dcterms.bibliographicCitationLeon, A.E., Mauricio, J.M., Solsona, J.A., Gomez-Exposito, A., Adaptive control strategy for VSC-based systems under unbalanced network conditions (2010) IEEE Trans. Smart Grid, 1 (3), pp. 311-319
dcterms.bibliographicCitationDong, D., Wen, B., Boroyevich, D., Mattavelli, P., Xue, Y., Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions (2015) IEEE Trans. Ind. Electron., 62 (1), pp. 310-321
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garces, A., Direct power control for VS-C-HVDC systems: an application of the global tracking passivity-based PI approach (2019) Int. J. Electr. Power Energy Syst., 110, pp. 588-597
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119
dcterms.bibliographicCitationMontoya, R.C., PI Passivity-Based Control: Application to Physical Systems, Ph.D. Thesis (2016), Université Paris-Saclay
dcterms.bibliographicCitationPerko, L., (2013) Differential Equations and Dynamical Systems, 7. , Springer Science & Business Media
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258. , http://www.sciencedirect.com/science/article/pii/S2352152X17303912
dcterms.bibliographicCitationXu, Y., Ren, L., Zhang, Z., Tang, Y., Shi, J., Xu, C., Li, J., Liu, H., Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions (2018) Energy, 143, pp. 372-384
dcterms.bibliographicCitation, pp. 1-16. , IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems – Amendment 1, IEEE Std 1547a-2014 (Amendment to IEEE Std 1547-2003), 2014
dcterms.bibliographicCitationGolestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907
dcterms.bibliographicCitationFreijedo, F.D., Doval-Gandoy, J., Lopez, O., Acha, E., Tuning of phase-locked loops for power converters under distorted utility conditions (2009) IEEE Trans. Ind. Appl., 45 (6), pp. 2039-2047
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.epsr.2019.105885
dc.subject.keywordsA low-voltage microgrid
dc.subject.keywordsDirect power model
dc.subject.keywordsElectrical energy storage system
dc.subject.keywordsPI passivity-based control
dc.subject.keywordsPort-Hamiltonian formulation
dc.subject.keywordsControllers
dc.subject.keywordsEnergy storage
dc.subject.keywordsFeedback linearization
dc.subject.keywordsHamiltonians
dc.subject.keywordsInvestments
dc.subject.keywordsMATLAB
dc.subject.keywordsPower control
dc.subject.keywordsElectrical energy storage systems
dc.subject.keywordsLow voltage microgrid
dc.subject.keywordsPassivity based control
dc.subject.keywordsPort hamiltonians
dc.subject.keywordsPower model
dc.subject.keywordsElectric power system control
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015.
dc.type.spaArtículo
dc.identifier.orcid57191493648
dc.identifier.orcid56919564100
dc.identifier.orcid36449223500


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.