Mostrar el registro sencillo del ítem
Direct power control of electrical energy storage systems: A passivity-based PI approach
dc.creator | Gil-González, Walter | |
dc.creator | Montoya O.D. | |
dc.creator | Garces A. | |
dc.date.accessioned | 2020-03-26T16:32:46Z | |
dc.date.available | 2020-03-26T16:32:46Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Electric Power Systems Research; Vol. 175 | |
dc.identifier.issn | 03787796 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9017 | |
dc.description.abstract | This paper proposes a direct power control for electrical energy storage systems (EESS) in ac microgrids. This strategy allows managing instantaneous active and reactive power without using a conventional inner-loop current regulator and without a phase-locked loop, increasing the reliability of the system while reducing investment costs. PI passivity-based control (PI-PBC) is selected to control the direct power model of EESS. This is because their models exhibit a port-Hamiltonian formulation in open-loop, and PI-PBC exploits this formulation to design a PI controller, which guarantees global asymptotically stability in closed-loop in the sense of Lyapunov. Simulations tested the proposed model in a microgrid and compared with conventional vector oriented controls in a dq reference frame and a direct power model controlled via feedback linearization (FL). PI-PBC has a better performance than other two controllers in all considered scenarios. Simulation results have conducted through MATLAB/SIMULINK software by using the SimPowerSystem toolbox. © 2019 Elsevier B.V. | eng |
dc.description.sponsorship | Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067625974&doi=10.1016%2fj.epsr.2019.105885&partnerID=40&md5=2d6229ffff15e246faa086da2f29e191 | |
dc.title | Direct power control of electrical energy storage systems: A passivity-based PI approach | |
dcterms.bibliographicCitation | Akinyele, D., Rayudu, R., Review of energy storage technologies for sustainable power networks (2014) Sustain. Energy Technol. Assess., 8, pp. 74-91 | |
dcterms.bibliographicCitation | Parra, D., Swierczynski, M., Stroe, D.I., Norman, S.A., Abdon, A., Worlitschek, J., O'Doherty, T., Zhang, X., An interdisciplinary review of energy storage for communities: challenges and perspectives (2017) Renew. Sustain. Energy Rev., 79, pp. 730-749 | |
dcterms.bibliographicCitation | Zakeri, B., Syri, S., Electrical energy storage systems: A comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev., 42, pp. 569-596 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garcés, A., Escobar, A., Grisales, L.F., Nonlinear control for battery energy storage systems in power grids (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70 | |
dcterms.bibliographicCitation | Gil-González, Montoya, O.D., Active and reactive power conditioning using SMES devices with PMW-CSC: a feedback nonlinear control approach (2019) Ain Shams Eng. J. | |
dcterms.bibliographicCitation | Planas, E., Andreu, J., Gárate, J.I., de Alegría, I.M., Ibarra, E., AC and DC technology in microgrids: a review (2015) Renew. Sustain. Energy Rev., 43, pp. 726-749 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garces, A., Distributed energy resources integration in single-phase microgrids: an application of IDA-PBC and PI-PBC approaches (2019) Int. J. Electr. Power Energy Syst., 112, pp. 221-231 | |
dcterms.bibliographicCitation | Aly, M.M., Abdel-Akher, M., Said, S.M., Senjyu, T., A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support (2016) Int. J. Electr. Power Energy Syst., 83, pp. 485-494 | |
dcterms.bibliographicCitation | Gil-González, W., Montoya, Danilo, O., Passivity-based PI control of a SMES system to support power in electrical grids: a bilinear approach (2018) J. Energy Storage, 18, pp. 459-466. , http://www.sciencedirect.com/science/article/pii/S2352152X18300483 | |
dcterms.bibliographicCitation | Rahim, A., Nowicki, E., Supercapacitor energy storage system for fault ride-through of a dfig wind generation system (2012) Energy Convers. Manag., 59, pp. 96-102 | |
dcterms.bibliographicCitation | Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380 | |
dcterms.bibliographicCitation | Shi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv., 23 (4), pp. 2097-2104 | |
dcterms.bibliographicCitation | Shi, J., Zhang, L., Gong, K., Liu, Y., Zhou, A., Zhou, X., Tang, Y., Li, J., Improved discretization-based decoupled feedback control for a series-connected converter of SCC (2016) IEEE Trans. Appl. Supercond., 26 (7), pp. 1-6 | |
dcterms.bibliographicCitation | Ali, M.H., Park, M., Yu, I.K., Murata, T., Tamura, J., Improvement of wind-generator stability by fuzzy-logic-controlled smes (2009) IEEE Trans. Ind. Appl., 45 (3), pp. 1045-1051 | |
dcterms.bibliographicCitation | Mohammedi, M., Kraa, O., Becherif, M., Aboubou, A., Ayad, M., Bahri, M., Fuzzy logic and passivity-based controller applied to electric vehicle using fuel cell and supercapacitors hybrid source (2014) Energy Proc., 50, pp. 619-626 | |
dcterms.bibliographicCitation | Wang, S., Jin, J., Design and analysis of a fuzzy logic controlled smes system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5 | |
dcterms.bibliographicCitation | Nguyen, T.T., Yoo, H.J., Kim, H.M., Applying model predictive control to SMES system in microgrids for eddy current losses reduction (2016) IEEE Trans. Appl. Supercond., 26 (4), pp. 1-5 | |
dcterms.bibliographicCitation | Shi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364 | |
dcterms.bibliographicCitation | Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garces, A., Control for EESS in three-phase microgrids under time-domain reference frame via PBC theory (2019) IEEE Trans. Circuits Syst. II, p. 1 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Serra, F., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II, 65 (12), pp. 2003-2007 | |
dcterms.bibliographicCitation | Lin, X., Lei, Y., Coordinated control strategies for SMES-battery hybrid energy storage systems (2017) IEEE Access, 5, pp. 23452-23465 | |
dcterms.bibliographicCitation | Hou, R., Song, H., Nguyen, T.-T., Qu, Y., Kim, H.-M., Robustness improvement of superconducting magnetic energy storage system in microgrids using an energy shaping passivity-based control strategy (2017) Energies, 10 (5), p. 671 | |
dcterms.bibliographicCitation | Leon, A.E., Mauricio, J.M., Solsona, J.A., Gomez-Exposito, A., Adaptive control strategy for VSC-based systems under unbalanced network conditions (2010) IEEE Trans. Smart Grid, 1 (3), pp. 311-319 | |
dcterms.bibliographicCitation | Dong, D., Wen, B., Boroyevich, D., Mattavelli, P., Xue, Y., Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions (2015) IEEE Trans. Ind. Electron., 62 (1), pp. 310-321 | |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Garces, A., Direct power control for VS-C-HVDC systems: an application of the global tracking passivity-based PI approach (2019) Int. J. Electr. Power Energy Syst., 110, pp. 588-597 | |
dcterms.bibliographicCitation | Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119 | |
dcterms.bibliographicCitation | Montoya, R.C., PI Passivity-Based Control: Application to Physical Systems, Ph.D. Thesis (2016), Université Paris-Saclay | |
dcterms.bibliographicCitation | Perko, L., (2013) Differential Equations and Dynamical Systems, 7. , Springer Science & Business Media | |
dcterms.bibliographicCitation | Montoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258. , http://www.sciencedirect.com/science/article/pii/S2352152X17303912 | |
dcterms.bibliographicCitation | Xu, Y., Ren, L., Zhang, Z., Tang, Y., Shi, J., Xu, C., Li, J., Liu, H., Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions (2018) Energy, 143, pp. 372-384 | |
dcterms.bibliographicCitation | , pp. 1-16. , IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems – Amendment 1, IEEE Std 1547a-2014 (Amendment to IEEE Std 1547-2003), 2014 | |
dcterms.bibliographicCitation | Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907 | |
dcterms.bibliographicCitation | Freijedo, F.D., Doval-Gandoy, J., Lopez, O., Acha, E., Tuning of phase-locked loops for power converters under distorted utility conditions (2009) IEEE Trans. Ind. Appl., 45 (6), pp. 2039-2047 | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1016/j.epsr.2019.105885 | |
dc.subject.keywords | A low-voltage microgrid | |
dc.subject.keywords | Direct power model | |
dc.subject.keywords | Electrical energy storage system | |
dc.subject.keywords | PI passivity-based control | |
dc.subject.keywords | Port-Hamiltonian formulation | |
dc.subject.keywords | Controllers | |
dc.subject.keywords | Energy storage | |
dc.subject.keywords | Feedback linearization | |
dc.subject.keywords | Hamiltonians | |
dc.subject.keywords | Investments | |
dc.subject.keywords | MATLAB | |
dc.subject.keywords | Power control | |
dc.subject.keywords | Electrical energy storage systems | |
dc.subject.keywords | Low voltage microgrid | |
dc.subject.keywords | Passivity based control | |
dc.subject.keywords | Port hamiltonians | |
dc.subject.keywords | Power model | |
dc.subject.keywords | Electric power system control | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | This work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015. | |
dc.type.spa | Artículo | |
dc.identifier.orcid | 57191493648 | |
dc.identifier.orcid | 56919564100 | |
dc.identifier.orcid | 36449223500 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.