Show simple item record

dc.creatorPalmieri D.
dc.creatorPortillo E.
dc.creatorSulbarán Y.
dc.creatorGuerra M.
dc.creatorSan-Blas E.
dc.identifier.citationBioControl; Vol. 64, Núm. 5; pp. 595-604
dc.description.abstractThe effect of two strains of Photorhabdus spp. from Heterorhabditis amazonensis and their metabolites was tested against Phytophthora in laboratory conditions and in planta using papaya plants. The in vitro experiments showed that both Photorhabdus strains (LPV-499 and LPV-900) have a clear antagonist effect on Phytophthora sp. by suppressing the pathogen growth in more than 62% at 120 h. The bacterial broth was more effective (c.a. 20% better) than the cell free cultures (metabolites) in controlling the oomycete. In planta experiments revealed the biological control potential of both Photorhabdus strains. The most important feature was time of application after pathogen inoculation. During the first two weeks post-infection, bacteria were capable to reduce the pathogenic effect in such a scale that plants recovered up to 89% by curing the necrosis produced in the wounds where the inoculation of the oomycete was done. The number of collapsed stems was reduced to none when the bacteria were applied within the first week post pathogen infection. Agronomic variables such as plant height, fresh and dry weight of stems and roots showed no statistical differences when the curative treatment was applied in the first week post-infection. © 2019, International Organization for Biological Control (IOBC).eng
dc.format.mediumRecurso electrónico
dc.publisherSpringer Netherlands
dc.titleBiocontrol of Phytophthora root and stem rot disease in papaya (Carica papaya) plants by Photorhabdus, the symbiont bacterium of Heterorhabditis amazonensis
dcterms.bibliographicCitationBae, S.-J., Mohanta, T.K., Chung, J.Y., Ryu, M., Park, G., Shim, S., Hong, S.-B., Bae, H., Trichoderma metabolites as biological control agents against Phytophthora pathogens (2016) Biol Control, 92, pp. 128-138
dcterms.bibliographicCitationBock, C.H., Shapiro-Ilan, D.I., Wedge, D.E., Cantrell, C.L., Identification of the antifungal compound, trans-cinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against pecan scab (2004) J Pest Sci, 87, pp. 155-162
dcterms.bibliographicCitationBoevink, P.C., McLellan, H., Gilroy, E.M., Naqvi, S., He, Q., Yang, L., Wang, X., Birch, P.R.J., Oomycetes seek help from the plant: Phytophthora infestans effectors target host susceptibility factors (2016) Mol Plant, 9, pp. 636-638
dcterms.bibliographicCitationDrenth, A., Sendall, B., (2001) Practical guide to detection and identification of Phytophthora, , 1, CRC for Tropical Plant Protection, Brisbane
dcterms.bibliographicCitationDutky, S.R., Thompson, J.V., Cantwell, G.E., A technique for the mass propagation of the DD-136 nematode (1964) J Insect Physiol, 6, pp. 417-422
dcterms.bibliographicCitationEzziyyani, M., Requena, M.E., Egea-Gilabert, C., Candela, M.E., Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination (2007) J Phytopathol, 155, pp. 342-349
dcterms.bibliographicCitationFang, X., Zhang, M., Tang, Q., Wang, Y., Zhang, X., Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta (2014) Sci Rep, 4, p. 4300
dcterms.bibliographicCitation(2018) FAOSTATS, ,, Accessed 6 Oct 2018
dcterms.bibliographicCitationHazir, S., Shapiro-Ilan, D.I., Bock, C.H., Hazir, C., Leite, L.G., Hotchkiss, M.W., Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens (2016) Eur J Plant Pathol, 146, pp. 369-381
dcterms.bibliographicCitationHung, P.M., Wattanachai, P., Kasem, S., Poaim, S., Biological control of Phytophthora palmivora causing root rot of pomelo using Chaetomium spp (2015) Mycobiology, 43, pp. 63-70
dcterms.bibliographicCitationKim, H.S., Sang, M.K., Jeun, Y.-C., Hwang, B.K., Kim, K.D., Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper (2008) Crop Prot, 27, pp. 436-443
dcterms.bibliographicCitationLamour, K.H., Stam, R., Jupe, J., Huitema, E., The oomycete broad-host-range pathogen Phytophthora capsici (2012) Mol Plant Pathol, 13, pp. 329-337
dcterms.bibliographicCitationLeguízamo, M.C., Sánchez, M., Martínez, J., Vela, D., Clavijo, S., García, A., Control of Fusarium spp and Bacillus subtilis through metabolites of Xenorhabdus bovienii mutualist of Steinernema feltiae (2014) Acta Agron, 63, pp. 55-62
dcterms.bibliographicCitationNg, K.K., Webster, J.M., Antimycotic activity of Xenorhabdus bovienii (Enterobacteriaceae) metabolites against Phytophthora infestans on potato plants (1997) Can J Plant Pathol, 19, pp. 125-132
dcterms.bibliographicCitationPaul, V.J., Frautschy, S., Fenical, W., Nealson, K.H., Antibiotics in microbial ecology (1981) J Chem Ecol, 7, pp. 589-597
dcterms.bibliographicCitationRibeiro, O.K., A historical perspective of Phytophthora (2013) Phytophthora: a global perspective, pp. 1-10. , Lamour K, (ed), CABI, Wallingford
dcterms.bibliographicCitationSan-Blas, E., Carrillo, Z., Parra, Y., Effect of Xenorhabdus and Photorhabdus bacteria and their exudates on Moniliophthora roreri (2012) Arch Phytopathol Plant Prot, 45, pp. 1950-1967
dcterms.bibliographicCitationSan-Blas, E., Parra, Y., Carrillo, Z., Effect of Xenorhabdus and Photorhabdus bacteria (Enterobacteriales: Enterobacteriaceae) and their exudates on the apical rotten fruit disease caused by Dothiorella sp. in guava (Psidium guajava) (2013) Arch Phytopathol Plant Prot, 46, pp. 2294-2303
dcterms.bibliographicCitationSang, M.K., Chun, S.-C., Kim, K.D., Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure (2008) Biol Control, 46, pp. 424-433
dcterms.bibliographicCitationSang, M.K., Shrestha, A., Kim, D.-Y., Park, K., Pak, C.H., Kim, K.D., Biocontrol of Phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici (2013) Plant Pathol J, 29, pp. 154-167
dcterms.bibliographicCitationScott, P., Burgess, T., Hardy, G., Globalization and Phytophthora (2013) Phytophthora: a global perspective, pp. 226-232. , Lamour K, (ed), CABI, Wallingford
dcterms.bibliographicCitationSegarra, G., Aviles, M., Casanova, E., Borrero, C., Trillas, I., Effectiveness of biological control of Phytophthora capsici in pepper by Trichoderma asperellum strain T34 (2013) Phytopathol Mediterr, 52, pp. 77-83
dcterms.bibliographicCitationShapiro-Ilan, D., Gaugler, R., Production technology for entomopathogenic nematodes and their bacterial symbionts (2002) J Ind Microbiol Biotechnol, 28, pp. 137-146
dcterms.bibliographicCitationShapiro-Ilan, D.I., Reilly, C.C., Hotchkiss, M., Suppressive effects of metabolites from Photorhabdus and Xenorhabdus spp. on phytopathogens of peach and pecan (2009) Arch Phytopathol Plant Prot, 42, pp. 715-728
dcterms.bibliographicCitationShapiro-Ilan, D.I., Bock, C.H., Hotchkiss, M.W., Suppression of pecan and peach pathogens on different substrates using Xenorhabdus bovienii and Photorhabdus luminescens (2014) Biol Control, 77, pp. 1-6
dcterms.bibliographicCitationShearer, B.L., Crane, C.E., Cochrane, A., Quantification of the susceptibility of the native flora of the South-West Botanical Province, Western Australia, to Phytophthora cinnamomi (2004) Aust J Bot, 52, pp. 435-443
dcterms.bibliographicCitationShi, D., An, R., Zhang, W., Zhang, G., Yu, Z., Stilbene derivatives from Photorhabdus temperata SN259 and their antifungal activities against phytopathogenic fungi (2017) J Agric Food Chem, 65, pp. 60-65
dcterms.bibliographicCitationSmith, V.L., Wilcox, F., Harman, G.E., Potential for biological control of Phytophthora root and crown rots of apple by Trichoderma and Gliocladium spp (1990) Phytopathology, 80, pp. 880-885
dcterms.bibliographicCitationSukhada, M., Manjula, R., Rawal, R.D., Evaluation of arbuscular mycorrhiza and other biocontrol agents against Phytophthora parasitica var. nicotianae infecting papaya (Carica papaya cv. Surya) and enumeration of pathogen population using immunotechniques (2011) Biol Control, 58, pp. 22-29
dcterms.bibliographicCitationThe Quyet, N., Cuong, T.H.V., Hong, L.T.A., Soytong, K., Antagonism of Chaetomium spp and their ability to control citrus root rot caused by Phytophthora parasitica in Vietnam (2014) Int J Agric Technol, 10, pp. 1307-1316
dcterms.bibliographicCitationUllah, I., Khan, A.L., Ali, L., Khan, A.R., Waqas, M., Hussain, J., Lee, I.J., Shin, J.H., Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021 (2015) J Microbiol, 53, pp. 127-133
dcterms.bibliographicCitationVawdrey, L.L., Martin, T.M., De Faveri, J., The potential of organic and inorganic soil amendments, and a biological control agent (Trichoderma sp.) for the management of Phytophthora root rot of papaw in far northern Queensland (2002) Australas Plant Pathol, 31, pp. 391-399
dcterms.bibliographicCitationVawdrey, L.L., Male, M., Grice, K.R.E., Field and laboratory evaluation of fungicides for the control of Phytophthora fruit rot of papaya in far north Queensland, Australia (2015) Crop Prot, 67, pp. 116-120
dcterms.bibliographicCitationVelivelli, S.L.S., De Vos, P., Kromann, P., Declerck, S., Prestwich, B.D., Biological control agents: from field to market, problems, and challenges (2014) Trends Biotechnol, 32, pp. 493-496
dcterms.bibliographicCitationWang, Y.-H., Zhang, X., Influence of agitation and aeration on growth and antibiotic production by Xenorhabdus nematophila (2007) World J Microbiol Biotechnol, 23, pp. 221-227
dcterms.bibliographicCitationWang, Y.-H., Li, Y.-P., Zhang, Q., Zhang, X., Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization (2008) Bioresour Technol, 99, pp. 1708-1715
dcterms.bibliographicCitationWaterfield, N.R., Ciche, T., Clarke, D., Photorhabdus and a host of hosts (2009) Annu Rev Microbiol, 63, pp. 557-574
dcterms.bibliographicCitationWebster, J., Li, J., Hu, K., Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes (1999) Nematology, 1, pp. 457-469
dcterms.bibliographicCitationYang, X., Qiu, D., Yang, H., Liu, Z., Zeng, H., Yuan, J., Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans (2011) World J Microbiol Biotechnol, 27, pp. 523-528
dc.subject.keywordsBiological control
dc.subject.keywordsTropical fruits
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.