Show simple item record

3-webs with singularities

dc.creatorArias Amaya F.A.
dc.creatorArteaga Bejarano J.R.
dc.creatorMalakhaltsev M.
dc.date.accessioned2020-03-26T16:32:44Z
dc.date.available2020-03-26T16:32:44Z
dc.date.issued2016
dc.identifier.citationLobachevskii Journal of Mathematics; Vol. 37, Núm. 1; pp. 1-20
dc.identifier.issn19950802
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9001
dc.description.abstractA 3-web with singularities is an ordered collection of three one-dimensional distributions L1, L2, L3 on a 2-dimensional manifold M. The subset Σ ⊂ M where these distributions are not pairwise transversal is called the singularity set. Under some conditions on Σ we find the differential invariants of the 3-web with singularities at the points of Σ and give examples of calculation of these invariants. © 2016, Pleiades Publishing, Ltd.eng
dc.description.sponsorshipFaculty of Arts and Sciences
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMaik Nauka-Interperiodica Publishing
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84955449607&doi=10.1134%2fS1995080216010029&partnerID=40&md5=060c52ba7a60af32607a41afa407db11
dc.title3-webs with singularities
dcterms.bibliographicCitationLazareva, V.B., Utkin, A.A., Shelekhov, A.M., (2012) J. of Mathematical Sciences, 174 (5), pp. 574-608
dcterms.bibliographicCitationGoldberg, V.V., Lychagin, V.V., (2006) J. Geom. Anal., 16 (1), pp. 69-115
dcterms.bibliographicCitationWang, J.S., (2012) J. Geom. Anal., 22 (1), pp. 33-73
dcterms.bibliographicCitationAgafonov, S.I., (2009) J. Geom. Anal., 19, pp. 481-508
dcterms.bibliographicCitationAgafonov (2012) arXiv:1105.1402v3 [MathDG]
dcterms.bibliographicCitationKobayashi, S., Nomizu, K., (1963) Foundations of Differential Geometry, , Wiley, New York, London
dcterms.bibliographicCitationSternberg, S., (1964) Lectures on Differential Geometry, , Prentice-Hall, Englewood Cliffs
dcterms.bibliographicCitationMontgomery, R., (2002) A tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, , AMS, Providence
dcterms.bibliographicCitationArteaga, J.R., Malakhaltsev, M.A., (2011) J. Geom. Phys, 61, pp. 290-308
dcterms.bibliographicCitationIvey, T.A., Landsberg, J.M., (2003) Cartan for the Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Graduate Studies in Mathematics, , Am. Math. Soc., Providence, RI
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1134/S1995080216010029
dc.subject.keywords3-webs
dc.subject.keywordsG-structures
dc.subject.keywordsSingularity
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis research was supported by the Vicerrector? a de Investigaciones and the Faculty of Sciences of the Universidad de los Andes.
dc.type.spaArtículo
dc.identifier.orcid57076963500
dc.identifier.orcid57076938200
dc.identifier.orcid6507151476


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/