Mostrar el registro sencillo del ítem

dc.creatorCastellanos González, Luis Marcos
dc.creatorBolívar F.J.
dc.creatorLugo H.R.
dc.date.accessioned2020-03-26T16:32:44Z
dc.date.available2020-03-26T16:32:44Z
dc.date.issued2016
dc.identifier.citationRevista Latinoamericana de Metalurgia y Materiales; Vol. 36, Núm. 2; pp. 235-247
dc.identifier.issn0255-6952
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9000
dc.description.abstractThis article presents the corrosion failure assessment on AISI 310 Steel, used as support of refractory concrete panels in a Clinker cooler under a combination of high temperatures and atmospheres with high concentration of sulfur and carbon. It was performed a microstructural analysis by scanning electron microscope with energy-dispersive X-Ray Spectrometer and by optic microscopy techniques. Furthermore it was used Raman spectroscopy in order to determinate the compounds formed in the rust layers. To understand the proposed corrosion mechanism, a thermodynamic simulation was performed on the basis of the 310S steel alloy main elements and temperatures between 700 and 1100 °C in an atmosphere mostly compound by sulfur and low oxygen. The results demonstrate that the material degradation occurred due to a combined process of carburation and sulfidication. As a result of these processes, on one side, it was the impoverishment of chrome in some areas due to the formation of carbides, on the other side, some nickel sulphides compunds emerge as eutectic compounds (Ni-N3S2) with melting points lower than 800 °C, which under this conditions, produce losses of material at the expense of their mechanical properties.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Simon Bolivar
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84988485478&partnerID=40&md5=0ce98a8c0bd83aa23ea0f483dc12da2e
dc.titleCorrosion failure assessment on AISI 310s steel used as support of refractory concrete panels in a clinker cooler
dc.title.alternativeAnálisis de la falla por corrosión del acero AISI 310 s usado como soporte de paneles de hormigón refractario en un enfriador de clinker
dcterms.bibliographicCitationCanales, C., Giménez, O., Avellaneda, A., (2004) Guía de Mejores Técnicas Disponibles en España de Fabricación de Cemento, , http://www.prtres.es/data/images/Gu%C3%ADaMTDenEspa%C3%B1aSectorCemento-BA18C5917BE0DC9D.pdf, Barcelona
dcterms.bibliographicCitationNikulin, I., Kaibyshev, R., Skorobogatykh, V., (2010) J. Phys. Conf. Ser., 240, p. 012071
dcterms.bibliographicCitationYan, Y.F., Xu, X.Q., Zhou, D.Q., Wang, H., Wu, Y., Liu, X.J., Lu, Z.P., (2013) Corros. Sci., 77, pp. 202-209
dcterms.bibliographicCitationZurek, J., Michalik, M., Schmitz, F., Kern, T.U., Singheiser, L., Quadakkers, W.J., (2005) Oxid. Met., 63, pp. 401-422
dcterms.bibliographicCitationYoung, D.J., Pint, B.A., (2006) Oxid. Met., 66, pp. 137-153
dcterms.bibliographicCitationKim, D., Jang, C., Ryu, W.S., (2009) Oxid. Met., 71, pp. 271-293
dcterms.bibliographicCitationGhosh, D., Mitra, S.K., (2015) High Temp. Mater. Process., 34, pp. 107-114. , http://www.degruyter.com/view/j/htmp.2015.34.issue-2/htmp-2014-0042/htmp-2014-0042.xml
dcterms.bibliographicCitationElliott, P., (2001) Chem. Eng. Prog., 97, pp. 75-81
dcterms.bibliographicCitationGhosh, D., Mitra, S.K., (2014) J. Mater. Eng. Perform., 23, pp. 1703-1710. , http://link.springer.com/10.1007/s11665-014-0938-3
dcterms.bibliographicCitationAnthymidis, K., Stergioudis, E., Tsipas, D., (2001) Mater. Lett., 51, pp. 156-160
dcterms.bibliographicCitationTjokro, K., Young, D.J., Johansson, R., Ivarsson, B., Tjokro, K., Young, D.J., Johansson, R., Ivarsson, B., (1993) J. Phys.
dcterms.bibliographicCitationNarita, T., High-temperature sulphidation of iron-based alloys (1990) High-temperature Oxid. Sulphidation Process., pp. 70-81. , http://linkinghub.elsevier.com/retrieve/pii/B9780080404233500100, ed. J. D Embury Ontario: Pergamon Press, Inc
dcterms.bibliographicCitationSantamaria, F.S., (1982) Mater. Construcción, pp. 67-80. , http://dialnet.unirioja.es/servlet/articulo?codigo=2309492
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.subject.keywords310 s steel
dc.subject.keywordsHigh temperature corrosion
dc.subject.keywordsNickel sulphide
dc.subject.keywordsRefractory concrete
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid57191267568
dc.identifier.orcid56346579100
dc.identifier.orcid57191266864


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.