Mostrar el registro sencillo del ítem

dc.contributor.editorEscalante H.J.
dc.contributor.editorMontes-y-Gomez M.
dc.contributor.editorSegura A.
dc.contributor.editorde Dios Murillo J.
dc.creatorRodríguez E.A.
dc.creatorEstrada F.E.
dc.creatorTorres W.C.
dc.creatorSantos J.C.M.
dc.date.accessioned2020-03-26T16:32:44Z
dc.date.available2020-03-26T16:32:44Z
dc.date.issued2016
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 259-270
dc.identifier.isbn9783319479545
dc.identifier.issn03029743
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8999
dc.description.abstractSevere Maternal Morbidity is a public health issue. It may occur during pregnancy, delivery, or puerperium due to conditions (hypertensive disorders, hemorrhages, infections and others) that put in risk the women’s or baby’s life. These conditions are really difficult to detect at an early stage. In response to the above, this work proposes using several machine learning techniques, which are considered most relevant in a bio-medical setting, in order to predict the risk level for Severe Maternal Morbidity in patients during pregnancy. The population studied correspond to pregnant women receiving prenatal care and final attention at E.S.E Clínica de Maternidad Rafael Calvo in Cartagena, Colombia. This paper presents the preliminary results of an ongoing project, as well as methods and materials considered for the construction of the learning models. © Springer International Publishing AG 2016.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Verlag
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994065492&doi=10.1007%2f978-3-319-47955-2_22&partnerID=40&md5=b77298054334f8966266596a659625f0
dc.titleEarly prediction of severe maternal morbidity using machine learning techniques
dcterms.bibliographicCitationCarty, D.M., Siwy, J., Brennand, J.E., Zürbig, P., Mullen, W., Franke, J., McCulloch, J.W., Mischak, H., Urinary proteomics for prediction of preeclampsia (2011) Hypertension, 57 (3), pp. 561-569
dcterms.bibliographicCitationCasal, J., Mateu, E., Tipos de muestreo (2003) Rev. Epidem. Med. Prev, 1 (1), pp. 3-7
dcterms.bibliographicCitationDuran, M.E.M., García, O.E.P., Carey, A.C., Bonilla, H.Q., Espitia, N.C.C., Barros, E.C., Protocolo De Vigilancia En Salud P
dcterms.bibliographicCitationFarran, B., Channanath, A.M., Behbehani, K., Thanaraj, T.A., Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: Machine-learning algorithms and validation using national health data from kuwaita cohort study (2013) BMJ Open, 3 (5)
dcterms.bibliographicCitationHaaga, J.G., Wasserheit, J.N., Tsui, A.O., (1997) Reproductive Health in Developing Countries: Expanding Dimensions, Building Solutions, , National Academies Press, Washington, D.C
dcterms.bibliographicCitationMariño Martínez, C.A., Fiesco, V., Carolina, D., Caracterizaci, , Ph.D. thesis, Universidad Nacional de Colombia
dcterms.bibliographicCitationMorales-Osorno, B., Martínez, D.M., Cifuentes-Borrero, R., Extreme maternal morbidity in Clinica Rafael Uribe Uribe, Cali, Colombia, from January 2003 to May (2007) Revista Colombiana De Obstetricia Y Ginecolog, 58 (3), pp. 184-188
dcterms.bibliographicCitationNanda, S., Savvidou, M., Syngelaki, A., Akolekar, R., Nicolaides, K.H., Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks (2011) Prenat. Diagn, 31 (2), pp. 135-141
dcterms.bibliographicCitationNeocleous, C.K., Anastasopoulos, P., Nikolaides, K.H., Schizas, C.N., Neokleous, K.C., Neural networks to estimate the risk for preeclampsia occurrence (2009) International Joint Conference on Neural Networks, IJCNN 2009, pp. 2221-2225. , IEEE
dcterms.bibliographicCitation(1996), Revised 1990 estimates of maternal mortality: a new approach. World Health Organization
dcterms.bibliographicCitationPark, F.J., Leung, C.H., Poon, L.C., Williams, P.F., Rothwell, S.J., Hyett, J.A., Clinical evaluation of a first trimester algorithm predicting the risk of hypertensive disease of pregnancy (2013) Aust. N. Z. J. Obstet. Gynaecol, 53 (6), pp. 532-539
dcterms.bibliographicCitationPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Duchesnay, E., Scikit-learn: Machine learning in Python (2011) J. Mach. Learn. Res, 12, pp. 2825-2830
dcterms.bibliographicCitationPoon, L.C., Kametas, N.A., Maiz, N., Akolekar, R., Nicolaides, K.H., Firsttrimester prediction of hypertensive disorders in pregnancy (2009) Hypertension, 53 (5), pp. 812-818
dcterms.bibliographicCitationRojas, J.A., Cogollo, M., Miranda, J.E., Ramos, E.C., Fernández, J.C., Bello, A.M., Morbilidad materna extrema en cuidados intensivos obst Revista Colombiana De Obstetricia Y Ginecolog
dcterms.bibliographicCitationde la Salud, O.P., (1995) Clasificación estadística Internacional De Enfermedades Y Problemas Relacionados Con La Salud: Décima revisi´on: CIE-10, , Pan American Health Org
dcterms.bibliographicCitationde Vigilancia, S., Control en salud p (2012) Informe De Intoxicaciones Por Plaguicidas, , Instituto Nacional de Salud, INS. Bogot, á, Colombia
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.event15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-319-47955-2_22
dc.subject.keywordsLogistic regression
dc.subject.keywordsMachine learning
dc.subject.keywordsSevere maternal morbidity
dc.subject.keywordsArtificial intelligence
dc.subject.keywordsDiseases
dc.subject.keywordsLearning algorithms
dc.subject.keywordsObstetrics
dc.subject.keywordsEarly prediction
dc.subject.keywordsLearning models
dc.subject.keywordsLogistic regressions
dc.subject.keywordsMachine learning techniques
dc.subject.keywordsMaternal morbidity
dc.subject.keywordsMethods and materials
dc.subject.keywordsPregnant woman
dc.subject.keywordsPublic health issues
dc.subject.keywordsLearning systems
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.relation.conferencedate23 November 2016 through 25 November 2016
dc.type.spaConferencia
dc.identifier.orcid57203489577
dc.identifier.orcid57191835839
dc.identifier.orcid57191844192
dc.identifier.orcid26325154200


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.