Mostrar el registro sencillo del ítem
Early prediction of severe maternal morbidity using machine learning techniques
dc.contributor.editor | Escalante H.J. | |
dc.contributor.editor | Montes-y-Gomez M. | |
dc.contributor.editor | Segura A. | |
dc.contributor.editor | de Dios Murillo J. | |
dc.creator | Rodríguez E.A. | |
dc.creator | Estrada F.E. | |
dc.creator | Torres W.C. | |
dc.creator | Santos J.C.M. | |
dc.date.accessioned | 2020-03-26T16:32:44Z | |
dc.date.available | 2020-03-26T16:32:44Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 259-270 | |
dc.identifier.isbn | 9783319479545 | |
dc.identifier.issn | 03029743 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8999 | |
dc.description.abstract | Severe Maternal Morbidity is a public health issue. It may occur during pregnancy, delivery, or puerperium due to conditions (hypertensive disorders, hemorrhages, infections and others) that put in risk the women’s or baby’s life. These conditions are really difficult to detect at an early stage. In response to the above, this work proposes using several machine learning techniques, which are considered most relevant in a bio-medical setting, in order to predict the risk level for Severe Maternal Morbidity in patients during pregnancy. The population studied correspond to pregnant women receiving prenatal care and final attention at E.S.E Clínica de Maternidad Rafael Calvo in Cartagena, Colombia. This paper presents the preliminary results of an ongoing project, as well as methods and materials considered for the construction of the learning models. © Springer International Publishing AG 2016. | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Verlag | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994065492&doi=10.1007%2f978-3-319-47955-2_22&partnerID=40&md5=b77298054334f8966266596a659625f0 | |
dc.title | Early prediction of severe maternal morbidity using machine learning techniques | |
dcterms.bibliographicCitation | Carty, D.M., Siwy, J., Brennand, J.E., Zürbig, P., Mullen, W., Franke, J., McCulloch, J.W., Mischak, H., Urinary proteomics for prediction of preeclampsia (2011) Hypertension, 57 (3), pp. 561-569 | |
dcterms.bibliographicCitation | Casal, J., Mateu, E., Tipos de muestreo (2003) Rev. Epidem. Med. Prev, 1 (1), pp. 3-7 | |
dcterms.bibliographicCitation | Duran, M.E.M., García, O.E.P., Carey, A.C., Bonilla, H.Q., Espitia, N.C.C., Barros, E.C., Protocolo De Vigilancia En Salud P | |
dcterms.bibliographicCitation | Farran, B., Channanath, A.M., Behbehani, K., Thanaraj, T.A., Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: Machine-learning algorithms and validation using national health data from kuwaita cohort study (2013) BMJ Open, 3 (5) | |
dcterms.bibliographicCitation | Haaga, J.G., Wasserheit, J.N., Tsui, A.O., (1997) Reproductive Health in Developing Countries: Expanding Dimensions, Building Solutions, , National Academies Press, Washington, D.C | |
dcterms.bibliographicCitation | Mariño Martínez, C.A., Fiesco, V., Carolina, D., Caracterizaci, , Ph.D. thesis, Universidad Nacional de Colombia | |
dcterms.bibliographicCitation | Morales-Osorno, B., Martínez, D.M., Cifuentes-Borrero, R., Extreme maternal morbidity in Clinica Rafael Uribe Uribe, Cali, Colombia, from January 2003 to May (2007) Revista Colombiana De Obstetricia Y Ginecolog, 58 (3), pp. 184-188 | |
dcterms.bibliographicCitation | Nanda, S., Savvidou, M., Syngelaki, A., Akolekar, R., Nicolaides, K.H., Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks (2011) Prenat. Diagn, 31 (2), pp. 135-141 | |
dcterms.bibliographicCitation | Neocleous, C.K., Anastasopoulos, P., Nikolaides, K.H., Schizas, C.N., Neokleous, K.C., Neural networks to estimate the risk for preeclampsia occurrence (2009) International Joint Conference on Neural Networks, IJCNN 2009, pp. 2221-2225. , IEEE | |
dcterms.bibliographicCitation | (1996), Revised 1990 estimates of maternal mortality: a new approach. World Health Organization | |
dcterms.bibliographicCitation | Park, F.J., Leung, C.H., Poon, L.C., Williams, P.F., Rothwell, S.J., Hyett, J.A., Clinical evaluation of a first trimester algorithm predicting the risk of hypertensive disease of pregnancy (2013) Aust. N. Z. J. Obstet. Gynaecol, 53 (6), pp. 532-539 | |
dcterms.bibliographicCitation | Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Duchesnay, E., Scikit-learn: Machine learning in Python (2011) J. Mach. Learn. Res, 12, pp. 2825-2830 | |
dcterms.bibliographicCitation | Poon, L.C., Kametas, N.A., Maiz, N., Akolekar, R., Nicolaides, K.H., Firsttrimester prediction of hypertensive disorders in pregnancy (2009) Hypertension, 53 (5), pp. 812-818 | |
dcterms.bibliographicCitation | Rojas, J.A., Cogollo, M., Miranda, J.E., Ramos, E.C., Fernández, J.C., Bello, A.M., Morbilidad materna extrema en cuidados intensivos obst Revista Colombiana De Obstetricia Y Ginecolog | |
dcterms.bibliographicCitation | de la Salud, O.P., (1995) Clasificación estadística Internacional De Enfermedades Y Problemas Relacionados Con La Salud: Décima revisi´on: CIE-10, , Pan American Health Org | |
dcterms.bibliographicCitation | de Vigilancia, S., Control en salud p (2012) Informe De Intoxicaciones Por Plaguicidas, , Instituto Nacional de Salud, INS. Bogot, á, Colombia | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1007/978-3-319-47955-2_22 | |
dc.subject.keywords | Logistic regression | |
dc.subject.keywords | Machine learning | |
dc.subject.keywords | Severe maternal morbidity | |
dc.subject.keywords | Artificial intelligence | |
dc.subject.keywords | Diseases | |
dc.subject.keywords | Learning algorithms | |
dc.subject.keywords | Obstetrics | |
dc.subject.keywords | Early prediction | |
dc.subject.keywords | Learning models | |
dc.subject.keywords | Logistic regressions | |
dc.subject.keywords | Machine learning techniques | |
dc.subject.keywords | Maternal morbidity | |
dc.subject.keywords | Methods and materials | |
dc.subject.keywords | Pregnant woman | |
dc.subject.keywords | Public health issues | |
dc.subject.keywords | Learning systems | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.relation.conferencedate | 23 November 2016 through 25 November 2016 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 57203489577 | |
dc.identifier.orcid | 57191835839 | |
dc.identifier.orcid | 57191844192 | |
dc.identifier.orcid | 26325154200 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.