Mostrar el registro sencillo del ítem

dc.creatorCaicedo-Torres W.
dc.creatorGutierrez J.
dc.date.accessioned2020-03-26T16:32:44Z
dc.date.available2020-03-26T16:32:44Z
dc.date.issued2019
dc.identifier.citationJournal of Biomedical Informatics; Vol. 98
dc.identifier.issn15320464
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8995
dc.description.abstractTo improve the performance of Intensive Care Units (ICUs), the field of bio-statistics has developed scores which try to predict the likelihood of negative outcomes. These help evaluate the effectiveness of treatments and clinical practice, and also help to identify patients with unexpected outcomes. However, they have been shown by several studies to offer sub-optimal performance. Alternatively, Deep Learning offers state of the art capabilities in certain prediction tasks and research suggests deep neural networks are able to outperform traditional techniques. Nevertheless, a main impediment for the adoption of Deep Learning in healthcare is its reduced interpretability, for in this field it is crucial to gain insight into the why of predictions, to assure that models are actually learning relevant features instead of spurious correlations. To address this, we propose a deep multi-scale convolutional architecture trained on the Medical Information Mart for Intensive Care III (MIMIC-III) for mortality prediction, and the use of concepts from coalitional game theory to construct visual explanations aimed to show how important these inputs are deemed by the network. Results show our model attains a ROC AUC of 0.8735 (± 0.0025) which is competitive with the state of the art of Deep Learning mortality models trained on MIMIC-III data, while remaining interpretable. Supporting code can be found at https://github.com/williamcaicedo/ISeeU. © 2019 Elsevier Inc.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAcademic Press Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070867164&doi=10.1016%2fj.jbi.2019.103269&partnerID=40&md5=b824faf402f646458dd0679ca76fb069
dc.titleISeeU: Visually interpretable deep learning for mortality prediction inside the ICU
dcterms.bibliographicCitationJohnson, A.E.W., Ghassemi, M.M., Nemati, S., Niehaus, K.E., Clifton, D., Clifford, G.D., Machine learning and decision support in critical care (2016) Proc. IEEE, 104 (2), pp. 444-466
dcterms.bibliographicCitationRapsang, A.G., Shyam, D.C., Scoring systems in the intensive care unit: a compendium (2014) Indian J. Crit. Care Med.: Peer-Review., Off. Publicat. Indian Soc. Crit. Care Med., 18 (4), pp. 220-228. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033855/
dcterms.bibliographicCitationHuang, Y.C., Chang, K.Y., Lin, S.P., Chen, K., Chan, K.H., Chang, P., Development of a daily mortality probability prediction model from Intensive Care Unit patients using a discrete-time event history analysis (2013) Comput. Methods Progr. Biomed., 111 (2), pp. 280-289. , http://www.sciencedirect.com/science/article/pii/S0169260713001107
dcterms.bibliographicCitationPaul, E., Bailey, M., Pilcher, D., Risk prediction of hospital mortality for adult patients admitted to Australian and New Zealand intensive care units: development and validation of the Australian and New Zealand Risk of Death model (2013) J. Crit. Care, 28 (6), pp. 935-941. , http://www.sciencedirect.com/science/article/pii/S0883944113002566
dcterms.bibliographicCitationChe, Z., Purushotham, S., Khemani, R., Liu, Y., Interpretable deep models for ICU outcome prediction (2016) AMIA Annu. Symp. Proc., 2016, pp. 371-380. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333206/
dcterms.bibliographicCitationLipton, Z.C., (2016), http://arxiv.org/abs/1606.03490, The Mythos of Model Interpretability, ICML Workshop on Human Interpretability in Machine Learning abs/1606.0 96–100. arXiv:arXiv:1606.03490v1
dcterms.bibliographicCitationHe, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image (2016) Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778
dcterms.bibliographicCitationSzegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Rabinovich, A., Going deeper with convolutions (2015), pp. 1-9. , 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
dcterms.bibliographicCitationUrban, G., Geras, K.J., Kahou, S.E., Aslan, O., Wang, S., Caruana, R., (2017), A.-r. Mohamed, M. Philipose, M. Richardson, Do Deep Convolutional Nets Really Need to be Deep (Or Even Convolutional)?, in: ICLR
dcterms.bibliographicCitationCooper, G.F., Aliferis, C.F., Ambrosino, R., Aronis, J., Buchanan, B.G., Caruana, R., Fine, M.J., Spirtes, P., An evaluation of machine-learning methods for predicting pneumonia mortality, Artif. Intell. Med
dcterms.bibliographicCitationShapley, L.S., A Value for n-Person Games (1953) Contributions to the Theory of Games II, pp. 307-317. , H.W. Kuhn A.W. Tucker Princeton University Press Princeton
dcterms.bibliographicCitationChe, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y., Recurrent Neural Networks for Multivariate Time Series with Missing Values, CoRR abs/1606.0
dcterms.bibliographicCitationGrnarova, P., Schmidt, F., Hyland, S.L., Eickhoff, C., Neural Document Embeddings for Intensive Care Patient Mortality Prediction, CoRR abs/1612.0
dcterms.bibliographicCitationPurushotham, S., Meng, C., Che, Z., Liu, Y., http://www.sciencedirect.com/science/article/pii/S1532046418300716, Benchmarking deep learning models on large healthcare datasets, J. Biomed. Inform. https://doi.org/10.1016/j.jbi.2018.04.007
dcterms.bibliographicCitationBa, L.J., Caruana, R., Do Deep Nets Really Need to Be Deep? (2014) Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS'14, pp. 2654-2662. , http://dl.acm.org/citation.cfm?id=2969033.2969123, MIT Press Cambridge, MA, USA
dcterms.bibliographicCitationSuresh, H., Hunt, N., Johnson, A., Celi, L.A., Szolovits, P., Ghassemi, M., Clinical Intervention Prediction and Understanding using Deep Networks, arXiv preprint arXiv:1705.08498
dcterms.bibliographicCitationShen, D., Wu, G., Suk, H.-I., Deep learning in medical image analysis (2017) Annu. Rev. Biomed. Eng., 19 (1), p. null
dcterms.bibliographicCitationLasko, T.A., Denny, J.C., Levy, M.A., Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data (2013) PLoS ONE, 8 (6), p. e66341. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691199/
dcterms.bibliographicCitationChe, Z., Kale, D., Li, W., Bahadori, M.T., Liu, Y., Deep Computational Phenotyping (2015), pp. 507-516. , http://doi.acm.org/10.1145/2783258.2783365, https://doi.org/10.1145/2783258.2783365. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15, ACM, New York, NY, USA
dcterms.bibliographicCitationSilva, I., Moody, G., Scott, D.J., Celi, L.A., Mark, R.G., Predicting In-Hospital Mortality of ICU Patients: the PhysioNet/Computing in Cardiology Challenge 2012 (2012) Comput. Cardiol., 39, pp. 245-248. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965265/
dcterms.bibliographicCitationKale, D.C., Che, Z., Bahadori, M.T., Li, W., Liu, Y., Wetzel, R., Causal phenotype discovery via deep networks (2015) AMIA Annu. Symp. Proc., 2015, pp. 677-686. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765623/
dcterms.bibliographicCitationLipton, Z.C., Kale, D.C., Elkan, C., Wetzell, R., Learning to Diagnose with LSTM Recurrent Neural Networks (2015) International Conference on Learning Representations (ICLR 2016)
dcterms.bibliographicCitationHochreiter, S., Schmidhuber, J., Long short-term memory (1997) Neural Comput., 9 (8), pp. 1735-1780
dcterms.bibliographicCitationLipton, Z.C., Kale, D., Wetzel, R., Doshi-Velez, F., Fackler, J., Kale, D., Wallace, B., Directly Modeling Missing Data in Sequences with RNNs: Improved Classification of Clinical Time Series (2016), 56, pp. 253-270. , http://proceedings.mlr.press/v56/Lipton16.html, of Proceedings of Machine Learning Research, PMLR, Northeastern University, Boston, MA, USA J. Weins (Eds.), Proceedings of the 1st Machine Learning for Healthcare Conference
dcterms.bibliographicCitationRazavian, N., Sontag, D., (2015), Temporal convolutional neural networks for diagnosis lab tests, 25 November abs/1511.0 1–17. arXiv:1151.07938v1
dcterms.bibliographicCitationJohnson, A.E.W., Pollard, T.J., Shen, L., Lehman, L.-W.H., Feng, M., Ghassemi, M., Moody, B., Mark, R.G., MIMIC-III, a freely accessible critical care database (2016) Sci. Data, 3, p. 160035
dcterms.bibliographicCitationRumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors (1986) Nature, 323 (6088), pp. 533-536
dcterms.bibliographicCitationChoi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J., GRAM: Graph-based Attention Model for Healthcare Representation Learning, CoRR abs/1611.0
dcterms.bibliographicCitationAczon, M., Ledbetter, D., Ho, L., Gunny, A., Flynn, A., Williams, J., Wetzel, R., Dynamic mortality risk predictions in pediatric critical care using recurrent (2017) Neural Networks, , arXiv:1701.06675
dcterms.bibliographicCitationBeaulieu-Jones, B.K., Orzechowski, P., Moore, J.H., Mapping patient trajectories using longitudinal extraction and deep learning in the MIMIC-III critical care database (2018) Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, pp. 123-132. , 23
dcterms.bibliographicCitationGall, J.R., Lemeshow, S., Saulnier, F., A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study, JAMA: J. Am. Med. Assoc. arXiv:0402594v3
dcterms.bibliographicCitationCalvert, J., Mao, Q., Hoffman, J.L., Jay, M., Desautels, T., Mohamadlou, H., Chettipally, U., Das, R., Using electronic health record collected clinical variables to predict medical intensive care unit mortality, Annals Med. Surg
dcterms.bibliographicCitationLeCun, Y., Bottou, L., Bengio, Y., Haffner, Gradient-Based Learning Applied to Document Recognition (1998), 86, pp. 2278-2324. , Proceedings of the IEEE
dcterms.bibliographicCitationRumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors, NaturearXiv:arXiv:1011.1669v3
dcterms.bibliographicCitationGoodfellow, I., Bengio, Y., Courville, A., Deep Learning (2016), MIT Press
dcterms.bibliographicCitationShapiro, L., Computer Vision (2001), Prentice Hall Upper Saddle River, NJ
dcterms.bibliographicCitationSrivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting (2014) J. Mach. Learn. Res., 15 (1), pp. 1929-1958. , http://dl.acm.org/citation.cfm?id=2627435.2670313
dcterms.bibliographicCitationIoffe, S., Szegedy, C., (2015), Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Arxiv abs/1502.0 1–11. arXiv:1502.03167
dcterms.bibliographicCitationStrumbelj, E., Kononenko, I., Wrobel, S., An efficient explanation of individual classifications using game theory, J. Mach. Learn. Res. arXiv:1606.05386
dcterms.bibliographicCitationZeiler, M.D., Fergus, R., Visualizing and Understanding Convolutional Networks (2014), pp. 818-833. , Springer International Publishing Cham
dcterms.bibliographicCitationShrikumar, A., Greenside, P., Kundaje, A., Learning Important Features Through Propagating Activation Differences, CoRR abs/1704.0. arXiv:1704.02685
dcterms.bibliographicCitationBach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W., On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation, PLoS ONEarXiv:1606.04155
dcterms.bibliographicCitationSimonyan, K., Vedaldi, A., Zisserman, A., Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, CoRR abs/1312.6
dcterms.bibliographicCitationSpringenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A., Striving for Simplicity: The All Convolutional Net, CoRR abs/1412.6. arXiv:1412.6806
dcterms.bibliographicCitationKindermans, P.-J., Schütt, K., Müller, K.-R., Dähne, S., Investigating the influence of noise and distractors on the interpretation of neural networks, ArXiv e-prints arXiv:1611.07270
dcterms.bibliographicCitationLundberg, S.M., Lee, S.-I., Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., A Unified Approach to Interpreting Model Predictions (2017), pp. 4765-4774. , http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf, R. Garnett (Eds.), Advances in Neural Information Processing Systems 30, Curran Associates Inc
dcterms.bibliographicCitationChollet, F., Keras 2015
dcterms.bibliographicCitationAbadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Zheng, X., (2015), http://download.tensorflow.org/paper/whitepaper2015.pdf, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, None 1 (212) 19. arXiv:1603.04467, https://doi.org/10.1038/nn.3331
dcterms.bibliographicCitationJohnson, A.E., Stone, D.J., Celi, L.A., Pollard, T.J., The, M.I.M.I., C Code Repository: Enabling reproducibility in critical care research, J. Am. Med. Inform. Assoc
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.jbi.2019.103269
dc.subject.keywordsDeep learning
dc.subject.keywordsICU
dc.subject.keywordsMIMIC-III
dc.subject.keywordsShapley values
dc.subject.keywordsDeep learning
dc.subject.keywordsForecasting
dc.subject.keywordsGame theory
dc.subject.keywordsIntensive care units
dc.subject.keywordsClinical practices
dc.subject.keywordsCoalitional game theory
dc.subject.keywordsMedical information
dc.subject.keywordsMIMIC-III
dc.subject.keywordsRelevant features
dc.subject.keywordsShapley value
dc.subject.keywordsSub-optimal performance
dc.subject.keywordsTraditional techniques
dc.subject.keywordsDeep neural networks
dc.subject.keywordsAdoption
dc.subject.keywordsArticle
dc.subject.keywordsDeep learning
dc.subject.keywordsGame
dc.subject.keywordsHuman
dc.subject.keywordsIntensive care unit
dc.subject.keywordsMedical information
dc.subject.keywordsMortality
dc.subject.keywordsPrediction
dc.subject.keywordsDeep neural network
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid55782426500
dc.identifier.orcid57211703831


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.